

Pre-Proceedings

GraBaTs 2010
4th International Workshop on Graph Based Tools

September 28th 2010, University of Twente, Enschede, The Netherlands

A satellite event of

ICGT’10

Edited by:

Juan de Lara
Daniel Varro

ECEASST

Preface

Welcome to GraBats’10, the 4th International Workshop on Graph Based Tools, colocated with
the Fifth International Conference on Graph Transformation (ICGT 2010) and the seventeenth
annual workshop on Software Model Checking (SPIN). This workshop aims at continuing the
GRABATS series of workshops that serve as a forum for researchers and practitioners interested
in the development and application of practical graph-based tools. Based upon mathematically
solid underlying concepts, graphs are at the core of tools and techniques in various application ar-
eas, and dealing with practical concerns, like: Tools for model-driven development, Meta CASE
tools or generators, Tools for Visual languages (UML, Domain-specific languages), Model trans-
formation and model management tools, Visualization, animation and simulation tools, Analysis
of models, transformations and programs (including verification and validation, static analysis,
testing), Data Analysis and Pattern Recognition Techniques, Tool integration techniques, Soft-
ware Engineering Tools, Software Evolution and Efficient algorithms (pattern matching, han-
dling of large graph models).

In all these areas tools are developed that store, retrieve, transform and display graphs. It is
the purpose of this workshop to summarize the state of the art of graph-based tool development,
bring together developers of graph-based tools in different application fields and to encourage
new tool development cooperations.

This year’s workshop has a special emphasis on applications of graph-based tools to Model-
Driven Engineering. Different tools, built around industry-driven frameworks (like Eclipse),
are based on the notion of graph to perform different activities, most notably different model
transformations, like animations, simulations, refactorings and model-to-model transformations.

This year we received 17 submissions, from which 12 where selected for presentation at the
workshop, 4 as long presentations and 8 as short ones. In addition, the technical programme
also includes an invited presentation “Methods and Tools for the Verification of Finite-State
and Infinite-State Graph Transformation Systems” by Prof. Barbara König of the University
Duisburg-Essen, Germany; as well as a joint invited talk with SPIN by Darren Cofer (Rockwell
Collins, USA) entitled “Model Checking: Cleared for Take Off”. The programme has been orga-
nized in 4 sessions: “Graph Transformation tools and applications”, “Verification and analysis I”,
“Diagram editors, animation and visualization” and “Verification and analysis II”. We hope you
will find the programme interesting, a useful forum for the exchange of ideas and an incentive
for your research.

We would like to thank the members of the Program Committee and the secondary reviewers
for their excellent work, they are listed below. We would also like to thank the organizing
committee of ICGT/SPIN 2010 for their constant support.

September 2010.
Juan de Lara, Daniel Varro.

PC chairs of GraBaTs’10.

1 / 2 Volume X (2010)

Preface of GraBaTs’10

Program Committee

• Artur Boronat, University of Leicester (UK)

• Claudia Ermel, Technical University of Berlin (Germany)

• Esther Guerra, Universidad Autónoma de Madrid (Spain)

• Ethan Jackson, Microsoft Research (USA)

• Frederic Jouault, University of Nantes (France)

• Dimitris Kolovos, University of York (UK)

• Barbara König, Universität Duisburg-Essen (Germany)

• Tihamer Levendovszky, Vanderbilt University (USA)

• Mark Minas, Universitat der Bundeswehr Munchen (Germany)

• Gabriele Taentzer, Philipps-Universitt Marburg (Germany)

• Pieter Van Gorp, Eindhoven University of Technology (the Netherlands)

• Hans Vangheluwe, Universiteit Antwerpen (Belgium)

• Gergely Varró Budapest University of Technology and Economics (Hungary) / TU Darm-
stadt (Germany)

• Andreas Winter, Carl von Ossietzky University, Oldenburg (Germany)

• Albert Zundorf, University of Kassel (Germany)

External Reviewers

Jörn Dreyer, Anne Etien, Ulrike Golas, Jan Jelschen, Ruben Jubeh, Christian Krause, Johannes
Spohr.

Proc. GraBaTs 2010 2 / 2

Index

Session 1: Graph Transformation tools and applications.

Visual Modeling of Controlled EMF Model Transformations using Henshin............................... 1
Enrico Biermann, Claudia Ermel, Johann Schmidt and Angeline Warning (Technische Universität Berlin,
Germany)

Attribute Computations in the DPoPb Graph Transformation Engine... 15
Hanh Nhi Tran, Christian Percebois, Ali Abou Dib, Louis Feraud and Sergei Soloviev (IRIT-University of
Toulouse, France)

Enabling Graph Transformations on Program Code... 28
Michael Striewe, Moritz Balz and Michael Goedicke (Universität Duisburg-Essen)

Session 2: Verification and Analysis I.

Reachability Analysis on Timed Graph Transformation Systems.. 41
Christian Heinzemann, Julian Suck and Tobias Eckardt (University of Paderborn, Germany)

Neighbourhood Abstraction in GROOVE... 54
Arend Rensink and Eduardo Zambon (University of Twente, The Netherlands)

Session 3: Diagram editors, animation and visualization.

Sketch-based Diagram Editors with User Assistance based on Graph Transformation and
Graph Drawing Techniques.. 61
Steffen Mazanek, Christian Rutetzki and Mark Minas (Universität der Bundeswehr München, Germany)

From the Behavior Model of an Animated Visual Language to its Editing Environment Based on Graph
Transformation... 75
Torsten Strobl, Mark Minas, Andreas Pleuß and Arnd Vitzthum (Universität der Bundeswehr München,
Germany; Lero, University of Limerick, Ireland; Technische Universität Bergakademie Freiberg, Germany)

Design of a SOM Business Process Modelling Tool based on the ADOxx Meta-modelling Platform
.. 89
Domenik Bork and Elmar J. Sinz (Otto-Friedrich Universität Bamberg, Germany)

Visualization of Traceability Models with Domain-specific Layouting............................. 102
Ábel Hegedüs, Zoltán Ujhelyi, Ákos Horváth and István Ráth (Budapest University of Technology and Economics,
Hungary)

Session 4: Verification and analysis II.

Invited Talk:
Methods and Tools for the Verification of Finite-State and Infinite-State Graph Transformation
Systems.. 115
Barbara König (Universität Duisburg-Essen)

Distributed Graph-Based State Space Generation... 117
Stefan Blom, Gijs Kant and Arend Rensink (University of Twente, The Netherlands)

Applying Offline Verification of Model Transformations to Mobile Social Networks..... 130
Mark Asztalos, Péter Ekler, Laszlo Lengyel and Tihamer Levendovszky (Budapest University of Technology and
Economics, Hungary)

Incremental Pattern Matching in Graph-Based State Space Exploration.. 143
Amir Hossein Ghamarian, Arash Jalali and Arend Rensink (University of Twente, The Netherlands and
NetStairs.com)

Electronic Communications of the EASST
Volume X (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Visual Modeling of Controlled EMF Model Transformation
using HENSHIN

Enrico Biermann, Claudia Ermel, Johann Schmidt and Angeline Warning

13 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

1

http://www.easst.org/eceasst/

ECEASST

Visual Modeling of Controlled EMF Model Transformation
using HENSHIN

Enrico Biermann, Claudia Ermel, Johann Schmidt and Angeline Warning

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

henshin@tfs.cs.tu-berlin.de

Abstract: The tool HENSHIN is an Eclipse plug-in supporting visual modeling and
execution of rule-based EMF model transformations. This paper describes the re-
cent extensions of HENSHIN by control structures for controlled rule applications.
The control structures comprise well-known imperative structures like sequences
and conditions on rule applications. Moreover, application conditions for individ-
ual rules may now be arbitrarily nested and combined by logical connectors. We
present the extension of the visual EMF model transformation environment HEN-
SHIN to edit and perform controlled EMF model transformations along an example
modeling a reactive Web service-based application (personal mobility manager).

Keywords: EMF, model transformation tool, graph transformation, Henshin

1 Introduction

Transformations are key modeling artefacts in model driven development. In graph transforma-
tion approaches and tools, rules express basic transformation steps. The application of rules may
be controlled implicitly like in AGG [AGG09], i.e. by a fixed strategy such as ”apply rules in
arbitrary order as long as possible” and by providing negative application conditions for rules.
Alternatively, control strategies may be defined explicitly like in Fujaba [FNTZ00], where an
activity diagram (story diagram) defines loops or conditions on rule applications. Explicit con-
trol structures raise the expressiveness of transformation systems since they provide means to
regulate the transformation process without having to introduce helper structures into the rules.

In this paper, we lift implicit and explicit control structures from graph transformation to EMF
model transformation and introduce an extension of our recently developed tool HENSHIN1 by
visual editors for control structures. HENSHIN is an Eclipse plug-in supporting visual modeling
and execution of EMF model transformations, i.e. transformations of models conforming to a
meta-model given in the EMF Ecore format2. The transformation approach we use in our tool
is based on graph transformation concepts which are lifted to EMF model transformation by also
taking containment relations in meta-models into account [ABJ+10].

Applying EMF model transformation rules in HENSHIN changes a model in-place, i.e. the
model is modified directly. Note that we speak of EMF model transformation in a general sense,

1 http://www.eclipse.org/modeling/emft/henshin/, originating from EMF TIGER [EMT09, BEK+06, BEL+10]
2 Note that we use the terms meta-model and model in this paper, which are called EMF model and model instance
in the EMF documentation, respectively.

1 / 13 Volume X (2010)

2

mailto:henshin@tfs.cs.tu-berlin.de

Visual Modeling of Controlled EMF Model Transformation using HENSHIN

comprising not only source-to-target model-to-model transformations but also model refactor-
ings or simulation of the system’s behavior3. The HENSHIN transformation engine provides
classes that can freely be integrated into existing Java projects relying on EMF.

Figure 1 shows the basic GUI of our HENSHIN tool before the extensions presented in this
paper. The tree view 1 allows the modeler to import EMF EPackages containing the basic
meta-model(s) defining the domain of the transformation. The initial model is edited in a visual
editor 2 . In the rule editor 3 , transformation rules can be created by editing a rule’s left-
hand side (LHS, the pre-condition) and right-hand side (RHS, the post-condition). The rule in
Figure 1 defines an operation which adds a Request object and links it to existing Departure
and a Destination objects. The property view 4 shows additional information for selected
objects. Note that all information edited using the editors in 2 , 3 and 4 can also be obtained
via the tree view 1 .

Figure 1: HENSHIN GUI with visual editors for graphs and rules.

The rule shown in 3 can now be applied to the current model in 2 leading to the transformed
graph shown in Figure 2, where a Request object has now been created and linked to the
Departure object named ”Berlin” and the Destination object named ”Potsdam”. The
layout of newly added object is computed automatically but may be adjusted by the user.

Currently there exist two implementations of the transformation engine. One is written in
Java while the other translates the transformation rules to AGG [AGG09]. This is useful for
3 like in our running example, the simulation of a personal mobility manager based on a web service

Proc. GraBaTs 2010 2 / 13

3

ECEASST

Figure 2: Transformed graph after applying rule RequestRouteMap

validation of consistent EMF model transformations which behave like algebraic graph transfor-
mations [BET08], e.g. to show functional behavior and correctness.

In this paper we describe the recent extension of HENSHIN supporting the use of the control
structures (called HENSHIN transformation units), e.g. constructs for non-deterministic rule
choices, rule sequences or conditional rule applications. Those constructs may be nested to
define more complex control structures. Passing of model elements as parameters from one
unit to another is also possible. Apart from control units defined over sets of rules, we now
also support the graphical definition of application conditions for individual rules. These are
application conditions in the sense of [HP09] allowing for arbitrary nesting. Several application
conditions can be combined by logical connectors.

The paper is structured as follows: in Section 2, the basic concepts of graph and EMF trans-
formation are reviewed. Section 3 presents our running example, the simulation of a personal
mobility manager based on a web service. Modeling this example, we made extensive use of
transformation units and application conditions which are introduced in Section 4 and Section 5,
respectively. Section 6 provides an overview of related approaches and tools in comparison to
our tool, and Section 7 concludes the paper with an outlook to future work.

2 EMF Model Transformation based on Graph Transformation

In this section, we introduce the main notions of modeling by algebraic graph transforma-
tion [EEPT06] (Subsection 2.1) and relate these notions to EMF modeling terms (Subsection 2.2).

2.1 Typed Attributed Graphs and Graph Transformation

A domain-specific visual language (DSVL) is modeled by a type graph defining the underlying
visual alphabet, i.e. the symbols (node types) and edge types which are available. Sentences or
diagrams of the DSVL are given by graphs typed over (i.e. conforming to) the type graph. Node
types may be attributed by attribute types.

The main idea of graph transformation is the rule-based modification of graphs where each
application of a graph transformation rule leads to a new transformed graph. The core of a graph
transformation rule (LHS r−→ RHS) is a pair of graphs (LHS,RHS), called left-hand side and
right-hand side, and an injective (partial) graph morphism r : LHS→ RHS. A graph morphism

3 / 13 Volume X (2010)

4

Visual Modeling of Controlled EMF Model Transformation using HENSHIN

consists of structure-preserving mappings from nodes in LHS to nodes in RHS, such that for an
edge from node n1 to node n2 in LHS which is preserved by the rule, we have a corresponding
edge from node r(n1) to r(n2) in RHS. In our approach, all graph morphisms are injective, i.e.
they do not merge elements. Applying the rule (LHS r−→ RHS) means to find a match of LHS
in the source graph and to replace this matched part in the source graph by the corresponding
RHS, thus transforming the source graph into the target graph (this step is called a direct graph
transformation). Intuitively, the application of rule r to graph G via a match m from LHS to G
deletes the image m(LHS) from G and replaces it by a copy of the right-hand side m∗(RHS).
Note that a rule may only be applied if the so-called gluing condition is satisfied, i.e. the deletion
step must not leave dangling edges.

Definition 1 (Graph Transformation) Let (LHS r−→ RHS) be a typed graph transformation rule
and G a typed graph with a typed graph morphism LHS m−→ G, called match.
A direct graph transformation G

r,m
=⇒ H from G to a typed graph H

via rule r, match m, and co-match m∗ is shown in the diagram to the
right. A sequence G0⇒ G1⇒ ..⇒ Gn of direct graph transforma-
tions is called graph transformation, denoted as G0

∗⇒ Gn.

LHS
r //

m
��

RHS

m∗

��
G // H

A rule may be extended by input parameters, i.e. variables used to compute new attribute
values for nodes in the right-hand side. When the rule is applied, the input parameters have to be
bound to concrete values (either by the match or by user input).

2.2 Typed Attributed Graphs versus EMF Modeling

The Eclipse Modeling Framework EMF [EMF08] is a modeling and code generation facility for
building tools and other applications based on a structured data model. Based on a meta-model,
EMF provides tools and runtime support to produce a set of Java classes for the meta-model, a set
of adapter classes that enable viewing and command-based editing of models conforming to the
meta-model, and a basic (tree-based) editor. EMF provides the foundation for interoperability
with other EMF-based tools, e.g. OCL checkers.

The conceptual similarities of modeling based on typed, attributed graphs and object-based
modeling as performed by EMF are shown in Table 1.

Table 1: Mapping EMF notions to graph terminology

EMF notion Graph term

EMF model Type graph with attribution, inheritance, multiplicities. Edges can be
marked as containments.

Instance model Typed, attributed graph with containment edges
Class Node in type graph
Object Node in typed graph
Association Edge in type graph (with possible multiplicities or containment mark)
Reference Edge in typed graph that satisfies multiplicity and containment constraints.

Proc. GraBaTs 2010 4 / 13

5

ECEASST

Classes in an EMF model (i.e. the meta-model) correspond to nodes in a type graph. Asso-
ciations between classes can be seen as edges in a type graph. Generalizations and multiplicity
constraints of association ends can also be defined in the type graph. Objects as instantiations
of classes of an EMF model are comparable to nodes in a graph which is typed by a type graph.
Objects can be linked to each other by setting reference values. Such references correspond to
edges in a typed attributed graph.

3 Example: Personal Mobility Manager

As running example, we specify and simulate the operational behavior of a Personal Mobility
Manager (PMM), a reactive service-based application designed to satisfy requirements related to
individual user mobility [LMEP08]. The aim of the system is to help the user finding an adequate
route from a departure place to a destination and to propose an adequate means of transportation
(either car or bike) by taking the current traffic intensity into account. We model the control flow
of messages that are exchanged between the user, the PMM and corresponding Web service. To
keep things simple, we do not model the actual web service here but simulate its responses by
suitable variable assignments.

The modeling domain is specified as meta-model, shown in Figure 3. We have model elements
for a user, his departure and destination locations, the means of transport, and requests sent to
web service. A Route element contains a route given as response by the mobility web service,
and a JamStatus element contains the response returned by the web service concerning the
traffic on a given route.

Figure 3: Meta-model for the Personal Mobility Manager

Basic PMM actions are modeled by EMF model transformation rules, shown in Figure 4.
Rule ChooseDestination creates a Destination object where the name of the desti-

nation is an input parameter; rules RequestRouteMap and ResponseRouteMap realize the
creation of a route (modeled by a Route object) via a web service call. Having called this web
service more than once, one of the returned routes is chosen by the user in rule ChooseRoute.
For a given route, the web service is used by rules RequestJamStatus and Response-
JamStatus to get information about the current traffic situation on this route. Depending on
the information obtained by the web service (and coded in the JamStatus node), the means of

5 / 13 Volume X (2010)

6

Visual Modeling of Controlled EMF Model Transformation using HENSHIN

Figure 4: EMF model transformation rules for the Personal Mobility Manager

transport can be changed from the default means ”car” (as presented in the start graph in Figure 1)
to the alternative means of transport ”bike”. This is realized by applying rules ForbidCar and
SelectBike. At last, the information about traffic (JamStatus node) and possible alter-
native routes which have not been chosen, are deleted using rules DeleteJamStatus and
DeleteUnusedRoute.

In the next section, we explain the use of HENSHIN transformation units to encapsulate and
control the order of rule applications.

4 HENSHIN Transformation Units

HENSHIN transformation units may be arbitrarily nested inside each other. The most basic unit
is a transformation rule. A HENSHIN transformation unit may be of type IndependentUnit (all
subunits are applied in arbitrary order), SequentialUnit (all subunits are applied sequentially in
a given order), CountedUnit (its subunit is applied a given number of times), ConditionalUnit
(its subunits are applied depending on the evaluation of a given condition unit), and PriorityUnit
(the applicable subunit with the highest priority is applied next). A unit is applicable (and returns

Proc. GraBaTs 2010 6 / 13

7

ECEASST

true) if it can be successfully executed. PriorityUnits and IndependentUnits are always appli-
cable, while SequentialUnits (CountedUnits) are applicable only if all subunits are applicable in
the given order (the given number of times). A ConditionalUnit is applicable if either the then-
subunit (in case the condition is true) or the else-subunit (in case the condition is false) are
applicable.

HENSHIN transformation units may be defined in the tree view or, alternatively, in a visual
editor. The tree view shows all transformation units and their nesting hierarchy (see Figure 5).
The visual editor for one unit shows the unit in a left view and one selected subunit in a right
view. Unit and subunit may share parameters indicated by the coloring of the parameter fields
(see Figure 5, where editors for unit mainUnit and unit trafficWS are opened in parallel). A
transformation unit view shows the unit’s name as header, a checkbox Activated which the user
may select/deselect to indicate whether this unit is active (will be considered while executing), a
set of parameters shown as boxes in the left column, and the names and kinds of its subunits in the
right column. Arrows from (to) parameter boxes to (from) subunits indicate which parameters
are input (output) of which subunit.

Figure 5: HENSHIN GUI with transformation unit editor

The transformation unit mainUnit shown in Figure 5 is the main control structure for the
PMM example. It is a SequentialUnit (symbolized by a film strip as icon in the upper left corner)
containing four subunits. This means that each subunit is applied once, in the given order from
top to bottom. The first subunit, ChooseDestination is a transformation rule, marked by
gear-wheels (see Figure 4 for the rule definition). This rule has an input parameter, the desti-
nation dest, a user-defined parameter. The second subunit of the main unit is a CountedUnit
(symbolized by a ”×n” icon). The counter is set to 3, i.e. its subunit is applied three times. Unit
pollTrafficWS is shown with its contents in the view to the upper right: it contains in turn a
SequentialUnit (trafficWS) which controls four rules realizing the web service requests and
processing the responses. The interaction of these rules within unit trafficWS can be seen in

7 / 13 Volume X (2010)

8

Visual Modeling of Controlled EMF Model Transformation using HENSHIN

the lower left view: rule ResponseRouteMap produces an output parameter of type Route
which serves again as input parameter for rule RequestJamStatus.

The third subunit of mainUnit, decideMeans, is a ConditionalUnit (symbolized by an if-
then-else icon). Clicking on its field, a detailed view of this unit is opened (see Figure 6). Here, a
condition called AllRoutesJammed (which will be discussed in Section 5) is checked which
is given as an empty rule where we check its application condition. If the condition is evaluated
to true, the two rules ForbidCar and SelectBike in the sequential unit are applied in this
order. Otherwise, rule ChooseRoute is applied and the parameter route is returned to the
parent unit mainUnit.

Figure 6: HENSHIN transformation unit decideMeans

The last child unit of mainUnit is the IndependentUnit removeUnusedData (with a die
as icon symbol). This unit contains two rules, DeleteJamStatus and DeleteUnused-
Route which perform garbage collection and are applied in arbitrary order, as long as possible.

5 Application Conditions

For graph transformation rules, well-known negative application conditions may be used that
forbid to apply a rule if a certain structure is present in the graph. As a generalization, appli-
cation conditions (introduced as nested application conditions in [HP09]) further enhance the
expressiveness of graph transformations by providing a more powerful mechanism to control
rule applications. While application conditions are as powerful as first order logic on graphs,
we can still obtain most of the interesting results available for graph transformations without ap-
plication conditions also for transformations with application conditions [EHL+10a, EHL10b] if
certain additional properties hold.

Like transformation units, application conditions can be nested. Moreover, application condi-
tions may be negated, and several application conditions may be combined by using the logical
connectors AND and OR.

Definition 2 (Graph condition and application condition) A graph condition ac over graph G
is of the form true or ∃(a,c) where a : P→ C is a graph morphism from a premise graph P to

Proc. GraBaTs 2010 8 / 13

9

ECEASST

a conclusion graph C, and c is a condition over C. Moreover, Boolean formulas over conditions
over P yield conditions over P, i.e. ¬c and ∧ j∈Jc j are (Boolean) conditions over P where J is
an index set and c, (c j) j∈J are conditions over P. Additionally, ∃a abbreviates ∃(a, true), ∀(a,c)
abbreviates ¬∃(a,¬c), false abbreviates ¬true, ∨ j∈Jc j abbreviates ¬∧ j∈J ¬c j, and c =⇒ d
abbreviates ¬c∨ d. A graph condition ac is called application condition of rule r : L→ R if ac
is a graph condition over L; an application condition of the form ¬∃a is usually called negative
application condition.

A condition is satisfied by a morphism into a graph if the required structure exists, which can
be verified by the existence of suitable morphisms.

Definition 3 (Satisfaction of conditions) Given a graph condition ac, a morphism p : P→ G
satisfies ac, written p |= ac, if ac = true. A morphism p : P→ G satisfies condition ac = ∃(a,c)
if there is an injective graph morphism q : C → G such that q ◦ a = p and q satisfies c. The
satisfaction of conditions by graphs and morphisms is extended to Boolean conditions in the
usual way. A rule L→ R is applicable only if the application condition ac is satisfied for its
match m : L→ G, i.e. if m |= ac.

Let us consider once more the ConditionalUnit decideMeans from our PMM example (see
Figure 6). Here, the condition AllRoutesJammed is expressed by an empty rule4 with a
nested application condition, shown in Figure 7.

In view 1 of Figure 7, the empty rule is shown together with the outermost condition graph
(condition over LHS). In the tree view of 1 , it can be seen that we require ¬∃Route, i.e. a
morphism from graph Route (consisting of a single Route node) into the host graph must
not exist for the rule to be applicable. Since this application condition is nested, we require a
further condition for the Route graph, formulated as disjunction (OR-construct) over two more
conditions: (¬∃ HasNoJamStatus∨∃ IsFree). This formula can be seen in the tree view of 2 ,
as well as in the corresponding visual hierarchical view where the formula is depicted as an OR
block with two compartments. Clicking on one of the two parts of the disjunction in the visual
view (or on one of the two OR branches in the tree view) opens the next level, either for the
formula ¬∃HasNoJamStatus in 3 or for the formula ∃IsFree in 4 . Here, we have arrived at
the basic level of graph morphisms. The complete nested application condition means that the
empty rule is applicable (returns true) if there exists no route that has either no JamStatus
node or that has a JamStatus node with attribute jam=false. Recall that in this case (all
routes are jammed) unit decideMeans (see Figure 6) applies rule switchToBike, otherwise
a route is chosen for the car as transport means.

6 Related Work

There are a number of model transformation engines which can modify models in EMF format
such as ATL [JK05], EWL [KPPR07], Tefkat [LS05], VIATRA2 [VB07], MOMENT [Bor07].
4 Note that we allow arbitrary transformation units as conditions in ConditionalUnits. While this may lead to side
effects if a unit different from the empty rule is used, the conceptual advantage is that components of HENSHIN

transformation units always are transformation units in turn.

9 / 13 Volume X (2010)

10

Visual Modeling of Controlled EMF Model Transformation using HENSHIN

Figure 7: Empty rule AllRoutesJammed with application condition

For ATL, a formal semantics based on Maude has been introduced recently [TV10]. Formal
semantics defined in Maude for MOMENT and for ATL might be exploited for analyzing EMF
model transformations. None of these tool environments supports visual editing of control struc-
tures.

Graph transformation tools like PROGRES [SWZ99], AGG [AGG09], FuJaBa [FNTZ00] and
MoTMoT [FOT10] feature visual editors which also support the definition of control structures,
e.g. by story diagrams in FuJaBa, which were extended by implicit control in [MV08]. The tool
GrGen.NET [GK08] also supports the arbitrary nesting of application conditions but is based on
a textual specification language. MoTMoT (Model driven, Template based, Model Transformer)
is a compiler from visual model transformations to repository manipulation code. The compiler
takes models conforming to a UML profile for Story Driven Modeling as input and outputs Java
Metadata Interface (JMI) code. Control structures are expressed by activity diagrams. Since
the MoTMoT code generator is built using AndroMDA, adding support for other repository
platforms (like EMF) is possible in principle and consists of adding a new set of code templates.

To the best of our knowledge, none of the existing EMF model transformation approaches

Proc. GraBaTs 2010 10 / 13

11

ECEASST

(based on graph transformation or not) support confluence and termination analysis of EMF
model transformation rules yet. Here, the HENSHIN approach and tool environment serves as
a bridge to make well-established tool features and formal techniques for graph transformation
available for model-driven development based on EMF.

7 Conclusion

In this paper, we presented two extensions for supporting controlled EMF transformations in our
EMF transformation environment HENSHIN. The first extension supports the visual definition of
HENSHIN transformation units which may be hierarchically nested (the basic unit being a rule)
and which restrict the possible rule application sequences in a suitable way. The second extension
concerns the definition of application conditions for transformation rules. Such conditions may
be nested as well, and they may be combined by logical connectors such as AND and OR. We il-
lustrated the usage of the extended HENSHIN environment by a simulation example of a personal
mobility manager (PMM). Apart from the PMM example, HENSHIN has been applied also for
larger case studies, e.g. for model refactorings [ABJ+10] and model-to-model transformations
such as the Ecore2Genmodel case study of the Transformation Tool Contest 2010 [BE10]5.

The extended HENSHIN environment provides visual views for all control structures and con-
ditions supporting zooming into deeper nesting levels. Thus, the visualization is independent of
the complexity of the (nested) control structures, as only two levels are shown at a time. Both
tree view editing and visual editing is supported at all levels. For editing formulas within appli-
cation conditions, from the user’s perspective an additional textual view of a complete formula
might be desirable [GP96]. The integration of such a textual formula view in HENSHIN is work
in progress.

A special kind of transformation units in HENSHIN are AmalgamationUnits, which are useful
to specify forall-operations on recurring model patterns. An AmalgamationUnit is a multi-rule
scheme containing the model pattern and a fixed kernel rule part. An amalgamated rule, induced
by such a scheme, is a kind of parallel rule synchronized at the kernel rule part. Its application
modifies all recurring instances of the model pattern in one step. The development of a visual
editor within HENSHIN for AmalgamationUnits is work in progress.

Furthermore, on the theoretical side we aim to lift confluence and termination analysis results
from the rule level to the level of transformation units.

References

[ABJ+10] T. Arendt, E. Biermann, S. Jurack, C. Krause, G. Taentzer. Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In Proc. Int. Conf. on
Model Driven Engineering Languages and Systems (MoDELS’10). 2010. To appear.

[AGG09] TFS-Group, TU Berlin. AGG. 2009. http://tfs.cs.tu-berlin.de/agg.

5 On the TTC webpage http://planet-research20.org/ttc2010/ a Share demo of HENSHIN can be found as well.

11 / 13 Volume X (2010)

12

http://tfs.cs.tu-berlin.de/agg
http://planet-research20.org/ttc2010/

Visual Modeling of Controlled EMF Model Transformation using HENSHIN

[BE10] E. Biermann, C. Ermel. Modeling the ”Ecore to GenModel” Transformation with
EMF Henshin. In Proc. Transformation Tool Contest 2010 (TTC’10). 2010. http:
//planet-research20.org/ttc2010/.

[BEK+06] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, E. Weiss. Graphical Def-
inition of In-Place Transformations in the Eclipse Modeling Framework. In Proc.
Int. Conf. on Model Driven Engineering Languages and Systems (MoDELS’06).
LNCS 4199, pp. 425–439. Springer, 2006.

[BEL+10] E. Biermann, C. Ermel, L. Lambers, U. Prange, G. Taentzer. Introduction to AGG
and EMF Tiger by Modeling a Conference Scheduling System. Int. Journal on Soft-
ware Tools for Technology Transfer 12(3-4):245–261, 2010.
http://www.springerlink.com/content/p4n1g45627852743/

[BET08] E. Biermann, C. Ermel, G. Taentzer. Precise Semantics of EMF Model Transfor-
mations by Graph Transformation. In Czarnecki (ed.), Proc. Int. Conf. on Model
Driven Engineering Languages and Systems (MoDELS’08). LNCS 5301, pp. 53–
67. Springer, 2008. http://tfs.cs.tu-berlin.de/publikationen/Papers08/BET08.pdf

[Bor07] A. Boronat. MOMENT: A Formal Framework for Model Management. PhD thesis,
Universitat Politècnica de València, 2007.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science. Springer, 2006.

[EHL+10a] H. Ehrig, A. Habel, L. Lambers, F. Orejas, U. Golas. Local Confluence for Rules
with Nested Application Conditions. In Proc. Int. Conf. on Graph Transformation.
2010. To appear. http://tfs.cs.tu-berlin.de/publikationen/Papers10/EHL+10.pdf

[EHL10b] H. Ehrig, A. Habel, L. Lambers. Parallelism and Concurrency Theorems for Rules
with Nested Application Conditions. Electronic Communications of the EASST 26,
2010. http://journal.ub.tu-berlin.de/index.php/eceasst/issue/view/36

[EMF08] Eclipse Consortium. Eclipse Modeling Framework (EMF) – Version 2.4. 2008. http:
//www.eclipse.org/emf.

[EMT09] TFS-Group, TU Berlin. EMF Tiger. 2009. http://tfs.cs.tu-berlin.de/emftrans.

[FNTZ00] T. Fischer, J. Niere, L. Torunski, A. Zündorf. Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language. In Proc. Int. Workshop on
Theory and Application of Graph Transformation (TAGT). LNCS 1764, pp. 296–
309. Springer, Berlin, 2000.

[FOT10] FOTS-Group, University of Antwerp. MoTMoT: Model driven, Template based,
Model Transformer. 2010. http://www.fots.ua.ac.be/motmot/index.php.

[GK08] R. Geiß, M. Kroll. GrGen.NET: A Fast, Expressive, and General Purpose Graph
Rewrite Tool. In Schürr et al. (eds.), Proc. 3rd Intl. Workshop on Applications

Proc. GraBaTs 2010 12 / 13

13

http://planet-research20.org/ttc2010/
http://planet-research20.org/ttc2010/
http://www.springerlink.com/content/p4n1g45627852743/
http://tfs.cs.tu-berlin.de/publikationen/Papers08/BET08.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers10/EHL+10.pdf
http://journal.ub.tu-berlin.de/index.php/eceasst/issue/view/36
http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://tfs.cs.tu-berlin.de/emftrans
http://www.fots.ua.ac.be/motmot/index.php

ECEASST

of Graph Transformation with Industrial Relevance (AGTIVE’07). LNCS 5088.
Springer, 2008. http://www.springerlink.com/content/r27386x52l85/

[GP96] T. R. G. Green, M. Petre. Usability Analysis of Visual Programming Environments:
a Cognitive Dimensions Framework. Journal of Visual Languages and Computing
7(2):131–174, 1996.

[HP09] A. Habel, K.-H. Pennemann. Correctness of high-level transformation systems rel-
ative to nested conditions. Mathematical Structures in Computer Science 19:1–52,
2009.

[JK05] F. Jouault, I. Kurtev. Transforming Models with ATL. In MoDELS Satellite Events.
LNCS 3844, pp. 128–138. Springer, Berlin, 2005.

[KPPR07] D. Kolovos, R. Paige, F. Polack, L. Rose. Update Transformations in the Small with
Epsilon Wizard Language. Journal of Object Technology 6(9):53–69, 2007.
http://www.jot.fm/issues/issues 2007 9/paper3

[LMEP08] L. Lambers, L. Mariani, H. Ehrig, M. Pezze. A Formal Framework for Devel-
oping Adaptable Service-Based Applications. In Proc. Fundamental Approaches
to Software Engineering (FASE’08). LNCS 4961, pp. 392–406. Springer, 2008.
http://www.springerlink.com/content/y24k478ww2212259/

[LS05] M. Lawley, J. Steel. Practical Declarative Model Transformation with Tefkat. In
MoDELS Satellite Events. LNCS 3844, pp. 139–150. Springer, Berlin, 2005.

[MV08] B. Meyers, P. Van Gorp. Towards a Hybrid Transformation Language: Implicit and
Explicit Rule Scheduling in Story Diagrams. In Proc. of the 6th Int. Fujaba Days.
2008.

[SWZ99] A. Schürr, A. Winter, A. Zündorf. The PROGRES-Approach: Language and Envi-
ronment. In Ehrig et al. (eds.), Handbook of Graph Grammars and Computing by
Graph Transformation, Volume 2: Applications, Languages and Tools. Pp. 487 –
550. World Scientific, 1999.

[TV10] J. Troya, A. Vallecillo. Towards a Rewriting Logic Semantics for ATL. In Proc. Int.
Conf. on Model Transformation (ICMT’10). LNCS 6142, pp. 230–244. Springer,
2010. http://www.springerlink.com/content/a494202j7440q2h0/

[VB07] D. Varró, A. Balogh. The model transformation language of the VIATRA2 frame-
work. Science of Computer Programming 68(3):214–234, 2007.

13 / 13 Volume X (2010)

14

http://www.springerlink.com/content/r27386x52l85/
http://www.jot.fm/issues/issues_2007_9/paper3
http://www.springerlink.com/content/y24k478ww2212259/
http://www.springerlink.com/content/a494202j7440q2h0/

Attribute computations

GraBats 2010 1 / 13

Attribute Computations in the DPoPb Graph Transformation Engine

Hanh Nhi Tran, Christian Percebois, Ali Abou Dib, Louis Féraud, Sergei Soloviev

IRIT, University of Toulouse
118 Route de Narbonne, F-31062 TOULOUSE CEDEX 9

{tran, percebois, aboudib, feraud, soloviev}@irit.fr

Abstract: One of the challenges of attributed graph rewriting systems concerns the
implementation of attribute computations. Most of the existing systems adopt the standard
algebraic approach where graphs are attributed using sigma-algebras. However, for the
sake of efficiency considerations and convenient uses, these systems do not generally
implement the whole attribute computations but rely on programs written in a
host language. In previous works we introduced the Double Pushout Pullback (DPoPb)
framework which integrates attributed graph rewriting and computation on attributes in a
unified categorical approach. This paper discusses the DPoPb’s theoretical and practical
advantages when using inductive types and lambda-calculus. We also present an
implementation of the DPoPb system in the Haskell language which thoroughly covers the
semantics of this graph rewriting system.

Keywords: attributed graph rewriting, attribute computation, algebraic graph
transformation, Haskell language.

1. Introduction
The last decade shows a great interest in graph rewriting in MDE [15] as a model

transformation technique. For these applications, it is important to use attributed graphs. There
are several works on attributed graph transformations (see e.g. [11][12][13][3][8]) mostly
based on the algebraic data types to implement attribute computations. In the algebraic
approach, attributes are given as values within some ∑-algebras. Therefore, information is
directly integrated in the graph structure by creating a new “attribute node” for each value of an
algebraic sort. This approach is theoretically sound but shows some limits on the expressiveness of
attribute computation and is especially difficult to be completely implemented. Thus most of the
existing systems resting on the standard algebraic approach hardly respect the theoretical
foundation. Consequently, the attributed graphs rewriting in these systems is validated
theoretically but not practically.

In [5] and [6] we introduced DPoPb, a unified categorical model of attributed graph
transformations using inductive types for attribute values and lambda-terms for computations.
Keeping the same conceptual scheme as in the DPO constructions, the goal of DPoPb is to put
the attribute computation to work in a more uniform way by staying within the same theory for
implementing computations. We argue in this paper that the inductive types and lambda-
calculus make attribute computations in DPoPb more expressive than in the DPO-standard
model [1] and facilitate the implementation of attributed graph rewriting system. This claim is
justified by an implementation of DPoPb engine in Haskell [2] which conforms entirely the
theoretical model hence allows validating theoretically and practically the DPoPb attributed
graphs rewriting.

15

 ECEASST

2 / 13 GraBats 2010

The paper is organized as follows. In Section 2 we analyse the differences between the
theoretical solutions for attribute computations in the DPoPb and the standard algebraic
approach represented by the HLR framework [3]. Section 3 discusses the implementation of
HLR and DPoPb graph rewriting systems. In Section 4, we sketch out the development of the
DPoPb prototype in Haskell to validate the theoretical foundation. Finally, in the last section
we discuss some current and future works to improve the DPoPb approach.

2. Attribute computations in the DPO and DPoPb approaches
 In this section we compare the solutions for attribute computations in the HLR approach [3]

with the DPoPb’s one. We first outline attribution computations in each approach, and then we
use an example to show their differences.

2.1. Attribute Computation in HLR framework
HLR framework [3] is representative for the algebraic approach attributed graph rewriting. This

work is now very well-known so we just give an outline of the approach for attribute computation.
In order to model attributed graphs with attributes for nodes and edges, HLR extend the

classical notion of graphs to E-graphs. An E-graph G has two different kinds of nodes,
implementing the graph and data nodes, and three kinds of edges, the usual graph edges and
special edges used for the node and edge attribution. An E-graph morphism fG is defined then as
a classical graph morphism. Let DSIG = (SD,OPD) be a data signature with attribute value sorts S’D
∈ SD. An attributed graph AG = (G,D) consists of an E-graph G together with a DSIG-algebra D
such that ⊎s∈S’D Ds = VD where VD is the set of data nodes of graph G. For two attributed graphs
AG1 = (G1,D1) and AG2 = (G2,D2), an attributed graph morphism f : AG1 → AG2 is a pair f = (fG, fD)
with an E-graph morphism fG : G1 → G2 and an algebra homomorphism fD : D1 → D2 such that the
square in Fig. 1 commutes for all s ∈ S’D, where the vertical arrows are inclusions.

Fig. 1. The algebra homomorphism fD in the attributed graph morphism f: AG1 → AG2

Given a data signature DSIG as depicted, attributed graphs and attributed graph morphisms
form the category AGraphs and graph rewrites can be realized by constructing the pushout of the
category using the double pushout or simple pushout approach. In this section we consider the
double pushout approach in HLR. A transformation rule p: L ← K → R is given by three
attributed graphs (with variables) K, L, and R and two morphisms l: K → L and r: K → R which
have to be injective on the graph structure and isomorphic over the ∑-algebra. In order to
describe computations on the attributes, terms containing variables are to be used; e.g., in the
graph R, an attribute x + y can be found if in the graph K the variables x and y are present.

To show how to combine graph transformations with computations on attributes in the HLR
framework, we rest on an example for computing the value of n!. In this example, we use the
signature Nat which defines the operators zero, succ, add and mul on the sort Nat. We can define
two algebras D1 and D2 associated to the signature Nat to give two different semantics for Nat.
For the illustration purpose, in this example, we use D1 and D2 which are different only on the
carrier sets as shown in Fig. 2b. We can define then the attributed graph type AG1 = (G,D1) to
represent the graphs which can be attributed by the values from 0 to 6 and the attributed graph
type AG2 = (G,D2) to represent the graphs attributed by the values from 0 to 720.

DG
1

VD
1

DG
2

VD
2 fG,VD

fD,s

16

Attribute computations

GraBats 2010 3 / 13

Fig. 2. Calculating n! by graph rewriting and attribute computations in HLR

Given a value n ≤ 6, let us suppose we compute the value of n! by graph rewriting in the
system supporting the attributed graphs defined with the above Nat signature. We use the
graph G of type AG1 composed of one node having the attribute n∈ D1

Nat. The computation’s
result will be stored in the graph H of type AG2 having also one node attributed by n∈ D2

Nat.
Fig. 2b describes the needed transformation from G to H. However, with the signature Nat we
cannot realize such a transformation because the factorial operator ! is not defined.
Consequently, we must decompose the computation of n! into many transformation steps,
using the four rules represented in Fig. 3.

Fig. 3. Rules used for calculating n! in HLR

The first rule is applied once on the initial graph to prepare the list of number analyzing n!.
Rule 2 is for delegating the computation of n-1! to a new node. This rule is applied until
number 2 is reached. When the rule 2 is completed, a chain of nodes is created with the final
node in still self-referred. To stop the delegation, the rule 3 is applied once to obtain a simple
chain of number from n to 2. Rule 4 now is applicable: it takes the numbers of the last two
nodes and multiplies them, then stores the result in the first of these two nodes, and deletes the
very last one. Applying rule 4 as long as possible to obtain the result represented by only one
node left, containing the computed result for n!. We can see that the computation of n! in this
example with HLR system requires four transformation rules and 2n-3 steps.

For each application of a rule, the attributes of graph L must be updated to produce the
graph R. In the literature, two main different approaches have been defined in order to specify
attribute-value changes: relabeling attribute-nodes [11][26] and reconnecting attribute-value
nodes [12][8]. In the relabeling issue, no built-in data types on labels are encoded and
programs are in general based on rule scheme labelled with terms over algebras. On the
opposite, in the reconnecting mode, a new edge is added each time the graph must reference a
new attribute value. The example in Fig. 2b is illustrated with reconnecting scheme.

2.2. Attribute computation in the DPoPb approach
The DPoPb framework relies on the classical DPO approach for the structural part and uses

type theory with inductive types for attribute computations. The precise definition of attributed
graphs in the DPoPb approach can be found in [4][5][6]. Below we will give the essential
information necessary to explain how attributes are implemented and computed in the DPoPb
framework.

L K R

2 2 2

L K R

n n n n -1

L K R

n n n

x*y x*y x y

L K R

(1) Rule

(2) Rule

(3) Rule

(4) Rule

DSIG = Nat
sort : Nat
opns :

zero : → Nat
 succ : Nat → Nat
 add : Nat Nat → Nat
 mul : Nat Nat → Nat

DSIG-algebra D1

D1
Nat = {0,1, 2, 3, 4, 5, 6}

zero D1 = 0

succ D1 (0) = 1; succ D1 (1) = 2; …

add D1 =…//defined by an conventional addtion table

mul D1 =…//defined by an conventional multiplication table

G H n n !

1 2 3 4 5 6 … 720 1 2 4 5 6 0 3
D1 D2

(b) Request Transformation to compute n!

(a) Data signature and the algebra defining the semantics of the signature

17

 ECEASST

4 / 13 GraBats 2010

DPoPb Attributed Graphs and Attributed Graph Morphisms
In the DPoPb approach, an attributed graph is defined with two parts: a graph structure

composed of labeled nodes and edges and a set of attributes associated to edges or nodes.
DPoPb uses type theory to code attributed graphs: finite types to describe the structure of
graphs and general inductive types to define data types and computations.

A morphism between two attributed graphs G and H is a 3-level structure morphism
f: G → H defined by two components: the first component specifies the structural part of the
morphism and the second one represents the attribute part of the morphism.
− The structural part, denoted fS, a graph morphism from G to H, is the first level.
− The attribute part has two levels.

• A relational level, denoted fR. It includes the multirelation R between the attributes of H
and G. For each attribute b of type B of the vertex s of G, a partition of the set R{s,b} of the
H’s attributes necessary to compute b. Each element of the partition (a subset of R{s,b})
together with b defines a tree, and the set of all trees of fR is called the forest of the
morphism.

• To each tree described above is associated a computation function represented by a
lambda-term t in a way such that if the leaves of a tree are the attributes a1,…, an of the
types A1,…, An respectively and its root is the attribute b of type B, then the type of the
term is A1 → … → An → B. The conditions to be satisfied is that t(a1,…, an) = b.

Usually the equality is the ordinary reduction-based equality of lambda-terms. Two
morphisms f, g: G → H are considered as equal if all components on all levels are equal.

Fig. 4 shows an example of the DPoPb formalism representing attributed graph and
attributed graph morphisms. In this example, we have a forest R composed of three trees T1, T2
and T3 in which T1 = ({7,8}, 15, λx y . x + y), T2= ({“Good”}, 4, λs . length s) and
T3 = ({“Good”,”Luck”}, “GoodLuck”, λs1 s2 . s1 ++ s2).

Fig. 4 An attributed morphism having a computation forest composed of three trees

The above definition of morphisms in DPoPb requires some comments on the reverse
direction for the attribute relations and the role of partitions and associated trees in the attribute
part of the morphism.

In our framework which uses the double pushout approach to rewrite graphs, the arrows for
attribute parts are reversed with respect to the arrows of the structural parts. This reversal
permits us to have a pseudo-pullback (pushout in dual category) to organize the computations
with attributes. The main idea of changing the orientation of the arrows for the functions is to
allow that the attributes in graph L can be stored in the graph K and then the attributes in graph
R can easily “go and pick up” any value of attributes in the graph K. Because graph K is the
intersection of graphs L and R, it contains only the common attributes of L and R. To preserve

“Luck”: String 7: Nat

“GoodLuck”: String

4: Nat

λ x y . x + y

H

G

“Good”: String

15: Nat

λ s . length s

λ s1 s2 . s1 ++ s2

: structural part morphism

: multirelation

lamda-term : computation function

gi : an attribute of G, i ∈[0..N]

hi : an attribute of H, j ∈[0..M]

R = {Ti}, i ∈[0..N]: a forest

Ti = ({h j}, gi, function): a tree of R.

8: Nat

18

Attribute computations

GraBats 2010 5 / 13

information, we may need several computation functions converging to the same target.
The use of multirelations follows naturally from the same assumptions. We assume that all
lambda-terms (containing, probably, free variables) are defined in the same context that
remains fixed (in principle, the context may be infinite). Thanks to this mechanism, several
attributes in graph L can be computed into one attribute in graph K, and several attributes in
graph R can share the same value of attributes in K.

Attributes computations in DPoPb
Now we take the same example presented in Section 2 on the computation of n! to illustrate the

attribute computation in DPoPb. InDPoPb to calculate n! we need only one rule shown in Fig.5.

Fig. 5. Calculating n! by graph rewriting and attribute computation in DPoPb

The number n for which n! will be computed is specified as an attribute of type Nat
associated to the unique structural node of the graph L. The computation of n! is realized by a
graph rewrite which preserves the structure graph. So we just discuss here the computation to
perform on attributes. The attribute part of the morphism l: K → L specified at two levels: a
relation connecting the attribute Nat in L to the attribute Nat in K and a lambda-term associated
to this relation to define the computation function realized during the graph rewriting. To
simplify programs of Fig. 5, we replaced the lambda-term by the definition of a function fact
which computes the factorial value for its parameter x. On the right-hand, the attribute part of
the morphism r: K → R specified with a relation connecting the attribute Nat in R to the
attribute Nat in K and an id function that allow copy the value of Nat in K to Nat in R. Given
an initial graph G with a concrete value of n, the lambda-term of l will be applied to n to
produce the result n!. This computation is performed by the β-reduction mechanism which
substitutes the effective value of n for the formal variable x in the term. So the computation of
n! in this example with DPoPb system requires only one transformation rule and one realizing
step.

As seen in the illustrating example of this section, in certain cases, the systems based on
∑-algebras cannot represent directly complex computations on attributes if the operators used
in the computation are not defined in the supporting ∑-algebras. In such cases, users have to
decompose the computation into several rules (e.g. as illustrated in Fig. 2).

In DPoPb, computations are based on lambda-calculus [25], a formal model for
computations. Let us recall that in this system, we can express computations with lambda-terms
which allow representing the terms (s), the function abstractions (λs . t) and the function
applications (t s). Lambda-terms then can be evaluated by the simple and powerful β-reduction
mechanism based on substitutions. This reduction mechanism is semantically defined and can be
easily implemented by a computer program. Thanks to this generic model of computation, the
DPoPb approach can allow a more natural and straightforward way to represent complex
computations defined only by abstraction and application of functions (e.g. as shown in Fig. 5).

n: Nat

fact x = if x== 0 then 1
 else x * fact (x-1)

L

n: Nat n: Nat

id x = x K R

19

 ECEASST

6 / 13 GraBats 2010

3. Implementation of HLR and DPoPb
In this section, we compare the potential implementations of HLR and DPoPb with respect

to their computational models. First we analyse the requested effort to implement exactly the
foundation models of each approach. Then we discuss the solutions used by some significant
systems to implement the HLR framework, as well as our solution for implementing the
DPoPb framework. Discussions show the distance between the implementation and the formal
model in each approach and some important side-effects raised in the tools resting on HLR.

3.1. Underlying mechanism for the transformation engine
In the HLR approach [3], attribute values are defined by separate data nodes which are

elements of some algebras. When attributed graphs and graph morphisms are considered over
∑-algebras, operations and constants defining the algebra must be always present and thus
previously defined. Of course, this is practically impossible because it is very cumbersome to
implement large graphs and unattainable for infinite graphs. In a tool implementation this
problem could be solved by including the attribute values of the algebra graph that are directly
reachable from the structural part of the graph. Consequently, most of the systems based on the
approach HLR use an object-oriented programming language to implement attribute
computations. Concretely, pre-conditions, post-conditions and actions are mainly expressed in
an object-oriented programming language: Java for AGG [1] and Fujaba [21], C++ for GReAT
[20], and Python for AToM3 [10]. Besides this popular solution, actions changing the models
are sometimes coupled to the rule selection process as in VIATRA [17] which supports ASMs
or in VMTS [18][19] where UML-like models are manipulated owing to stereotyped activity
diagrams, XSLT and (Imperative) OCL.

Let’s consider a system using an external language to express actions as well as conditions
on attributes, for instance AGG tool. In AGG, graphs are attributed by Java objects which can
be instances of Java classes from libraries like JDK or from user-defined classes. The main
difference with the formal system is the use of Java classes and expressions instead of
algebraic specifications and terms. Thanks to some interoperability with the host language, the
obtained system is a general purpose graph transformation tool covering a large variety of
applications including graph transformation. However, classes of the underlying object-
oriented language whose semantics is not covered by the formal foundation belong to
applications as well.

A guiding principle of DPoPb is to propose a close relationship between the formal ground
and its underlying engine. The lambda-calculus which formalizes the algorithmic notion of a
function is proposed as a model of attribute computations. Existing graph nodes describing
attributes thus can be reused and updated thanks to lambda-terms implementing the attribute
computations. Lambda-terms can be easily expressed in a functional programming which is
based also on lambda-calculus. Such an implementation preserves the semantics of the formal
model, and provides static strong typing, polymorphism, higher-order functions and lazy
evaluation for the graph rewriting system. For implementing the DPoPb prototype, we chose
the Haskell language and benefit all of these advantages of the lambda-calculus paradigm.

3.2. Types declarations of attributed graphs
In HLR graph transformation tools, an attribute is often declared as a variable in a conventional

programming language. For instance, in AGG, an attribute is implemented by a Java variable
which can be assigned to any value conforming to its type. Because users can use any Java

20

Attribute computations

GraBats 2010 7 / 13

acceptable expressions to compute attributes’ value, the Java type system defines the type system
of the graph rewriting. This issue is not specific to AGG; it exists also in other known graph
transformation systems such as Fujaba, GReAT, AToM3... A strongly typed language such as Java
is considered useful to reinforce the security of programs by preventing programmers from making
freely mistakes. In fact, this statement is not true in certain cases. For example, a class in Java is
perhaps a wrong subtype of its superclass. In order to be a subtype, the methods of the subclass
must satisfy the superclass' specifications. This relation cannot be checked at compile-time, so it is
possible to create a subclass that is not a subtype [22]. Hence the type system used by the graph
transformation scheme where each attribute has a name, a type and a value can be unsecure.

For instance, let us consider the two following classes Integer and MyInteger in Java.
MyInteger looks like an Integer by adding an attribute which specifies a name s for the value v:

public class Integer {
 private int v ;
 public Integer (int v) {…}
 public boolean equals (Integer i) {...}

}

public class MyInteger {
 private int v ;
 private String s ;
 public MyInteger (int v, String s) {…}
 public boolean equals (MyInteger i) {…}

}

MyInteger is not a subtype of Integer. To insure subtyping, we need that MyInteger must
have a stronger specification than Integer. This is not the case because the type of the
parameter of the equals method of MyInteger should be at most as strict as in the supertype.
Using the Java’s extends relation between an Integer and MyInteger is also not appropriate
with respect to subtyping. This is mainly because a C++ or Java class defines at the same time
attributes (state) and methods (behaviour). Subclasses are not subtypes. Consequently, an
Integer object cannot be dynamically substituted by a MyInteger one during the rewriting
process.

In contrast to these systems, the DPoPb can avoid such kinds of problem on the type
system. In Haskell, a safe polymorphic type system is supported by a powerful type inference
algorithm. A type specification is separated from its methods (functions). A class specifies the
operations that the types must support. It’s a template for types. A type is said to be an instance
of a class if it supports these operations. For instance, here is the (incomplete) Eq class from
the Standard Prelude defining the == (equals) and /= (different) functions.

class Eq a where -- a is an instance of Eq
 (==), (/=) :: a -> a -> Bool -- if a implements == and /=

x /= y = not (x == y)

data MyInteger = MyInteger {v :: Integer, s :: String}

instance Eq MyInteger where
 (MyInteger v1 s1) == (MyInteger v2 s2) = (v1 == v2) && (s1 == s2)

This code defines MyInteger as a data type which wraps an Integer presenting the value v
and a String s representing the name of the value. This type is then considered as an instance
of Eq. The three definitions (class, data type and instance) are completely separated and there
is no rule about how they are grouped.

We think that this separation is more secure than actual attribute declarations in an object-
oriented host language because well-typed lambda-terms are always well-behaved with respect
to reduction. In addition, all the types associated with a function definition can be checked at

21

 ECEASST

8 / 13 GraBats 2010

compile-time, and inferred automatically. To take a full advantage of the typed lambda-
calculus, an attractive perspective of DPoPb is to define type checking rules between the types
of the computation functions and the types of the attributes of the attributed graph.

3.3. Attributes computations
Loading compiled codes

As previously stated, several transformation systems rely upon an underlying language for
the specification of textual constraints and attribute updates. These definitions have to be
compiled and provided to the graph transformation machinery in the form of a dynamic
library, which is loaded at runtime. Within the transformation environment, it is quite easy to
propose a special attribute editor that pops up when a graph object is selected for attribution.
However, the user cannot directly access to the code of the function dealing with these
attributes. As the function is considered as a black box, round trips between the host language
and the graph rewriting tool are necessary to finalize the computation code. Each round trip is
translated by a compilation process in the host language.

In DPoPb, the use of a unified formalism based on type theory for manipulating attributes
enables a reliable environment so that both structural and attribute manipulations are handled
in the same framework. The β-reduction mechanism used to evaluate lambda-terms can be
easily implemented. Implementation which allows compiling and dynamically evaluating
attribute computations is then possible. In Section 4, we will show how this capability is
instantiated for the DPoPb’s implementation.

Lazy evaluation
Another relevant feature for attribute computations is about lazy evaluation. Using this

technique, no expression is evaluated until its value is needed and no shared expression is
evaluated more than once. Lazy functions, also called non-strict, only evaluate their arguments
when needed. On the opposite, C functions and Java methods are strict and evaluate their
arguments in an eager mode. Lazy evaluation makes it possible for functions to manipule
infinite data structures. This interesting feature enables us to describe an object without being
tied to one particular application of that object.

For comparison purposes, let us consider an infinite list of integers starting from a given
value. Such a lazy list can be represented in Java as a process [23] which returns objects either
forever, or until no more are left1:

public interface Process {
public Object nextElement () throws NoSuchElement;

}

public class NumFromProcess implements Process {
private int upto;
public NumFromProcess (int n) {

this.upto = n;
}

public Object nextElement () {

return new Integer (this.upto ++);
}

}

In Haskell language, for the same construction, we simply define:

1 Java codes are extracted from [23]

22

Attribute computations

GraBats 2010 9 / 13

numFrom n = n : numFrom (n + 1)

Extracting a finite list from NumFromProcess implies to manage exception handlings
because we don’t have a method to explicitly test for the presence of the next element. This
test is assumed by throwing a NoSuchElement exception when the nextElement method is
invoked. For instance, the Java following class SingleProcess computes a Process producing
only one object:

public class SingleProcess implements Process {
private Object item;
public SingleProcess (Object item) {

this.item = item;
}
public Object nextElement () throws NoSuchElement {

if (item == null) throw new NoSuchElement ();
else {

Object temp = item;
item = null;
return temp;

}
}

}

In addition, the Process interface defines a lazy list that is consumed as fast as it is produced
and a shared expression is evaluated more than once. If previous elements need to be saved, then
the programmer must add classes to store computed values in a structured data type.

In comparison, this mechanism is intrinsically supported by Haskell thanks to lazy
evaluation. The following Haskell function f extract with take a list containing the successives
values of the factorial computations, starting from 1! until n!. This is done by first building the
infinite list nats and then applying the fact function to the obtained nats list. With the same
technique, we build the infinite list facts of factorials. In this code, the map function is a
higher-order function which goes through every element of a list and applies a function given
by its first argument: + in the case of nats and fact for the list of factorials.

f n = take n facts facts = 1 : map (fact) nats
nats = 1 : map (+1) nats fact 0 = 1

fact n = n * fact (n -1)

With respect to functional programming languages, Java lacks some conciseness. Some
libraries have been proposed to implement the lazy-evaluation mechanism for object-oriented
environments. For instance Lambda4J [24] provides lazy lists and associated operations. More
recently, LazyJ [23] extends Java's type system with lazy types. Besides expressiveness, a major
challenge with lazy evaluation concerns sharing computation results. In all relevant functional
language implementations, terms are represented as a graph. In the future, we would like to
establish mappings between rewriting such terms and rewriting terms in an attributed graph.

4. The DPoPb prototype
To validate the theoretical model DPoPb, we have developed a prototype in Haskell

language. In the first time, the goal of this prototype is to construct the basic DPoPb
categorical concepts for attributed graphs rewriting when focusing on the implementation of
attribute computation. Fig. 6 displays the architecture of our prototype.

23

 ECEASST

10 / 13 GraBats 2010

Fig. 6. Architecture of the DPoPb prototype

DPoPb prototype is a general purpose graph rewriting system composed of two modules
DPoPb-InOut and DPoPb-Engine. The module DPoPb-InOut provides an interface for the
prototype. It allows users to specify transformation rules and initial graphs (via the sub-module
GetInput) as well as visualize the result of the transformation (by the sub-module
PrintOutput). At the current stage of development, we base on the Haskell predefined modules
wxHaskell and graphviz (defined in the Hackage Database [16]) for the graphical user
interface and the graph visualization respectively.

The DPoPb-Engine module is the kernel of our prototype. It contains two sub-modules:
ConstructCatAttGraph and ComputeAttribute. The sub-module ConstructCatAttGraph
implements the main concepts of DPoPb including the colimits of the category of DPoPb
attributed graphs (CatAttGraph) as well as the graph rewriting based on the approach double
pushout. The sub-module ComputeAttribute supplies the utilities functions concerning attribute
computations during the rewriting (e.g. the composition the attribute part of attributed graph
morphims which is needed in the construction of CatAttGraph pushout; the dynamic
evaluation of lamda-expressions representing attribute computations). In
ConstructCatAttGraph, when constructing the structural part of the colimits we reused
CatGraph, the implementation of Schneider [7] defining the colimits of the category of graphs.
We also reuse some functions in the API of Glasslow Haskell Compiler to support the
dynamic specification and evaluation of attribute computations.

Our main contributions in the development of the prototype concern solutions for the
following theoretical and technical questions:

How to implement the theoretical concepts of DPoPb?
The mathematical model in [4] provided a formal framework for the category of attributed

graphs CatAttGraph but it is not straightforward to map those categorical concepts into
computational constructs. Thus, we had to define the constructive data structures and
algorithms for storing graphs and graphs morphisms; for constructing the coproduct,
coequalizer, pushout complement and pushout of the category CatAttGraph. The difficulty of
this task resides in defining the attribute part of the graphs and graphs morphisms in the
construction of each colimit such that its categorical properties are satisfied.

How to evaluate users-defined attribute computations at runtime?
We want to allow users to define their graphs together with attribute computations as non-

compiled functions (written in Haskell for example). The challenge here is that at runtime the
rewrite engine must enable the generation of Haskell codes of user-defined functions and
integrate these codes into the engine in order to evaluate them in the rewrite process. Thus we

DPoPb-InOut

GetInput PrintOutput Construct
CatAttGraph

ComputeAttribute

DPoPb-Engine

wxHaskell graphviz CatGraph ghc API

UserGraph

Transformation
Rule

AttGraph
Constructs

ResultGraph

Data used in the
system

DPoPb Module Reused Model in Haskell Reuse Relation Data Flow

24

Attribute computations

GraBats 2010 11 / 13

need to support the meta-programming at runtime. To support this flexibility, we relied on the
Glasgow Haskell Compiler (GHC) which proposes the necessary API functions to compile and
evaluate Haskell functions. We used Haskell module hint 0.3.2 [16] wrapping those GHC
functions to invoke the GHC compiler at runtime.

How to update graphs during the rewriting?
The double pushout rewriting process necessitates an update of the transformation rules

when the content of an initial graph is given. Using an imperative language, such an update is not
difficult. However, the update implemented in an imperative language is undefined semantically
and then out of control. Haskell is a pure functional language that does not allow side-effects.
Hence we must ensure that computations with side-effects for the update of attributes during the
rewrite process will be encapsulated to respect the functional style of the program. For this
purpose, we base on monads [14]. We defined a monad transformer (State transformer) that
enables hiding underlying machinery for updating graphs during the DPoPb process. The main
interest here is that we can allow the update operations during the rewrite term process without
losing the advantages of the functional paradigm and the Haskell type system.
We now show in Fig. 7 some screenshots of our prototype.

Fig. 7. DPoPb prototype’s screenshots

In the left-hand are the widgets used to receive inputs including the transformation rules and
the initial graph. Actually we do not implement an algorithm to find a match, so the initial graph
G is took as an instance of graph L defined with concrete attributes’ values. The frame Morphism
K → L shows how the attribute part of the morphism is specified with the attribute relations and
the computation functions. The input information will be encoded in the internal data structure
and manipulated by the DPoPb engine module to construct the pushout complement graph D and
the pushout graph H. To visualize DPoPb graphs, currently we rely on the GraphViz system
[28]. The DPoPb internal data structures are thus translated to the graph descriptions in the DOT
language (by using the Haskell module graphviz [16]) which can be displayed with GraphViz as
shown in the right-hand of the figure. On the right side of this part, we display the graph
representing the rules L←K→R. The attributes n of L and p of R are connected to the attribute m
of K by the function factorial and the function identity respectively. The graph on the left side
shows the pushout complement D and the pushout H constructed by applying the rule L←K→R
on the concrete graph G. Since the value of G’s attribute is 3, the value of D’s attribute is 6 -
factorial of 3. The value of H’s attribute is the copy of D’s attribute, thus it is also 6.

25

 ECEASST

12 / 13 GraBats 2010

5. Conclusion
In the HLR framework, attributed graph structures are given by algebras over a specific

signature where the structure part and the attribute part are separated from each other. If this
solution is theoretically acceptable, it is not very efficient and cannot be easily implemented
for a general purpose graph transformation system. Consequently, users have to program and
compile computation functions separately within a companion programming tool before
integrating their functions into transformation rules.

Contrary to HLR approach, our approach proposes a single formalism that integrates the
rewrite of structural parts of graphs with attribute computations. This solution rests on
category theory and type theory thus doesn’t entail a semantic gap between the theoretical
model and its implementation. This advantage has been validated by an ongoing–developed
prototype of the DPoPb system implemented in the Haskell language.

We have identified two directions for future researches. The first one concerns proving
properties of transformations. As we want keeping trace of evaluation or verification of the
correctness of attributes’ computations during the transformation, we plan to import
transformations supported by our DPoPb tool into the Isabelle/HOL proof assistant via
Haskabelle [26] in order to specify and prove relevant properties the transformations have to
satisfy. Another direction deals with reasoning on programs transformations. It relies on the
use of functional programming languages for programming applications based on rewriting
attributed graphs. As these languages promote a more abstract style of programming and
support higher-level constructions, we have in mind simplification of programs transformation
and to cope with them as functional programs.

References
[1] AGG Homepage, http://tfs.cs.tu-berlin.de/agg/
[2] Haskell Homepage, http://www.haskell.org/
[3] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental theory for typed attributed graph

transformation. In Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce, and Grzegorz
Rozenberg, editors, ICGT, volume 3256 of LNCS, pp. 161-177, Springer, 2004.

[4] Maxime Rebout. Une approche catégorique unifée pour la réecriture de graphes attribuées. PhD
thesis, Université Paul Sabatier, 2008.

[5] Maxime Rebout, Louis Féraud, and Sergei Soloviev. A unifed categorical approach for attributed
graph rewriting. In E.Hirsch, A.Razborov, A.Semenov, and A.Slissenko, editors, CSR, volume 5010
of LNCS, pp. 398-409, Springer, 2008.

[6] Maxime Rebout, Louis Féraud, Lionel Marie-Magdeleine, Sergei Soloviev. Computations in Graph
Rewriting: Inductive types and Pullbacks in DPO Approach. In IFIP TC2 Central and East European
Conference on Software Engineering Techniques (CEE-SET 2009), Krakow, Pologne, 2009.

[7] Hans Jurgen Schneider. Implementing the Categorical Approach to Graph Transformations with
Haskell. In An Introduction to the Categorical Approach, Draft March 7, 2007.

[8] Harmen Kastenberg. Towards Attributed Graphs in Groove: Work in Progress. Electr. Notes Theor.
Comput. Sci. 154(2), pp. 47-54, 2006.

[9] Schurr, A. Introduction to PROGRES, an Attribute Graph Grammar Based Specification Language.
Proc. WG89. LNCS 411, pp. 151-165, Springer, 1990.

[10] de Lara, J. and Vangheluwe, H. AToM3: A Tool for Multi-Formalism Modeling and Meta-
Modelling. Proc. FASE’02, LNCS 2306, pp. 174-188, Springer, 2002.

26

Attribute computations

GraBats 2010 13 / 13

[11] Lowe, M., Korff, M., Wagner, A. An Algebraic Framework for the Transformation of Attributed
Graphs. In Term Graph Rewriting: Theory and Practice, John Wiley and Sons Ltd. (1993), pp. 181-
1993.

[12] Heckel, R., Küster, J., Taentzer, G. Confluence of Typed Attributed Graph Transformation with
Constraints. In Proc. ICGT 2002, Volume 2505 of LNCS, Springer (2002), pp. 161-176.

[13] Berthold, M., Fischer, I., Koch, M. Attributed Graph Transformation with Partial Attribution,
Technical Report 2000-2, 2000.

[14] P. Wadler. Monads for Functional Programming. In Advanced Functional Programming, Springer
Verlag, LNCS 925, 1995.

[15] Bézivin, J. On the Unification Power of Models. Software and System Modeling (SoSym) 4(2):171-
188, 2005.

[16] Hackage Database http://hackage.haskell.org/packages/hackage.html
[17] Varro, D., Pataricza, A. Generic and meta-transformations for model transformation engineering. In

Baar, T., Strohmeier, A., Moreira, A., Mellor, S., eds., Proc. UML 2004, 7th International Conference
on the Unified Modeling Language, Lisbon, Portugal, Springer (2004), pp. 290-304.

[18] VMTS Web Site, http://avalon.aut.bme.hu/_tihamer/research/vmts
[19] Levendovszky T., Lengyel L., Mezei G., Charaf H. A Systematic Approach to Metamodeling

Environments and Model Transformation Systems. In VMTS, 2nd International Workshop on Graph
Based Tools (GraBaTs); workshop at ICGT.

[20] Daniel Balasubramanian, Anantha Narayanan, Chris vanBuskirk, and Gabor Karsai. The Graph
Rewriting and Transformation Language: GReAT. Proceedings of the Third International Workshop
on Graph Based Tools (GraBaTs 2006); workshop at ICGT.

[21] Robert Wagner. Developing Model Transformations with Fujaba. In Proc. of the 4th International
Fujaba Days 2006, Bayreuth, Germany (Holger Giese and Bernhard Westfechtel, eds.), vol. tr-ri-06-
275 of Technical Report, pp. 79-82, University of Paderborn, September 2006.

[22] Sophia Drossopoulou, Susan Eisenbach. Java is Type Safe – Probably. European Conference on
Object Oriented Programming, 1997.

[23] Dekker, Anthony H. Lazy functional programming in Java. SIGPLAN Not. Volume 41, Number 3,
pp. 30-39, 2006.

[24] Lambda4J Web Site. http://www.nongnu.org/lambda4j/
[25] Henk Barendregt, Erik Barendsen. Introduction to Lambda Calculus, 1994.
[26] Plump, D. and S. Steinert. Towards Graph Programs for Graph Algorithms. In ICGT, LNCS 3256,

pp. 128-143, Springer, 2004.
[27] Haskabelle website : http://www.cl.cam.ac.uk/research/hvg/isabelle/haskabelle.html
[28] GraphViz website : http://www.graphviz.org

27

Electronic Communications of the EASST
Volume X (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Enabling Graph Transformations on Program Code

Michael Striewe, Moritz Balz, and Michael Goedicke

12 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

28

ECEASST

Enabling Graph Transformations on Program Code

Michael Striewe, Moritz Balz, and Michael Goedicke

Paluno – The Ruhr Institute for Software Technology
University of Duisburg-Essen, Essen, Germany

{michael.striewe, moritz.balz, michael.goedicke}@s3.uni-due.de

Abstract: Although the internal representation of program code in parsers and com-
pilers is the abstract syntax tree and thus a graph, tools for handling program code as
an explicit graph are rare. This contribution introduces a tool that generates abstract
syntax graphs out of Java program code. Code can be read and stored as a graph,
and code can be manipulated by the application of graph transformations. We show
by examples how this can be used for low-level analysis and manipulation as well
as for code interpretation at different levels of abstraction with formal models.

Keywords: Abstract Syntax Graph, Code Manipulation, Model Transformation,
Graph Pattern Matching

1 Introduction

Program code is usually represented in a textual notation. Consequently, any manipulation on
it can be expressed in terms of creating, replacing, moving, or deleting strings. However, the
internal representation of program code as used by parsers and compilers is the notation of an
abstract syntax tree, which is based on the type graph given by the grammar of the respective
programming language. Reverse engineering and refactoring tools usually traverse this data
structure for their manipulations. Since traversing is only one limited possibility to handle a
graph, it is appealing to make this graph structures explicitly available for a general-purpose
graph transformation engine. By this means any kind of code manipulation can be expressed
as graph transformation rules. This is of interest whenever program code is to be analyzed,
manipulated, or transformed according to well-defined rules.

In this contribution we present approaches that enable the use of graph transformation tech-
niques for program code written in the programming language Java. Code can be read and stored
as a graph, and code can be manipulated by the application of graph transformations. This con-
tribution is organized as follows: Section 2 describes JAVA2GGX, which is the actual tool that
makes Java syntax graphs available to a graph transformation engine. Sections 3 and 4 discuss
low-level and high-level transformations of program code based on examples. The remaining
two sections provide a brief overview about related work and draw conclusions.

2 The Basics: JAVA2GGX

In order to make Java source code available for graph transformation techniques, the explicit
generation of syntax graphs is necessary. Our graph-based tools for manipulating and analyzing

1 / 12 Volume X (2010)

29

Enabling Graph Transformations on Program Code

public class SampleClass {
public static void main(String[] args) {
new AnotherClass(1).talk();

}
}

Listing 1: Source code of SampleClass.java used as example in this section.

public class AnotherClass {
public AnotherClass(int i) { }

public void talk() {
System.out.println("Hello world!");

}
}

Listing 2: Source code of AnotherClass.java used as example in this section.

Java code are based on a component named JAVA2GGX, which in turn is based on AGG [AGG]
and its file format GGX. In our case, JAVA2GGX uses the AGG programming interface (version
1.6.4) as an underlying engine for all graph transformation activities.

Abstract syntax trees are generated by a parser while processing source code. They reflect the
structural elements of the source code using the grammar of a certain programming language.
JAVA2GGX is capable of parsing Java files to their syntax tree according to the Java Language
Specification for Java 6. Each structural element is represented by a node which is of a certain
type and which possibly has attributes. Each connection between nodes is made up by directed
arcs which are also typed and may have attributes.

Although an abstract syntax tree reflects all structural properties of source code, it is not always
comfortable to work with a plain abstract syntax tree. For this reason JAVA2GGX automatically
performs some modifications during parsing. These modifications introduce both new attributes
and new arcs which implies that the result is no longer a tree but a graph. All modifications are
explained in detail in the following.

An example of source code and the extracted graph is shown in listings 1 and 2 and figure
1. The layout has been done manually in AGG. Names for node types are identical to the class
names used inside the parser for representing the abstract syntax tree. Arcs in blue color are
additional arcs introduced by JAVA2GGX and thus not part of the parsed abstract syntax tree.
They will not be considered if code is generated or rewritten from a graph.

2.1 Simplified Naming

According to the Java language specification, names are assigned to elements by referring to
an element of type SimpleName or QualifiedName. In the syntax tree this is represented
by outgoing arcs of type name towards nodes of type SimpleName or QualifiedName
respectively, which contain an attribute for the name. While this structure is reasonable for
language design, it adds an overhead of nodes and arcs to the graph. For this reason the graph is

Proc. GraBaTs 2010 2 / 12

30

ECEASST

Figure 1: Sample graph generated by JAVA2GGX from the source code shown in listings 1 and 2.

simplified by assigning name attributes to several types of nodes directly, thus omitting the extra
nodes for this purpose. In detail, this applies to the following structures:

• Nodes of type QualifiedName are omitted if they own the name property for nodes of
type ImportDeclaration or PackageDeclaration. Instead, an attribute name
is given to these nodes directly.

• Nodes of type SimpleName are omitted if they own the name property for nodes of
type MethodDeclaration, MethodInvocation, PackageDeclaration,
SimpleType, SingleVariableDeclaration, TypeDeclaration or
VariableDeclarationFragment. Instead, these nodes are given an attribute
name directly.

2.2 Line Numbers

Since the parser used inside JAVA2GGX provides information about the line number of each struc-
tural element, this information is included into each node. Thus each node owns an additional
attribute containing the line number that is the origin of this element inside the respective source
code file.

3 / 12 Volume X (2010)

31

Enabling Graph Transformations on Program Code

2.3 Blocks

Some Java constructs like methods or loops have a so-called “body” that is a block of
statements. More precise, elements that span out a block have either outgoing arcs of type
bodyDeclarations to each declaration statement inside the block or an outgoing arc of
type body to an explicit Block node. By following arcs reverse to their direction until
reaching arcs of the types named above, a path to the roots of blocks for each element can be
found.

However, AGG does not support expressing paths in rules. In order to enable rules that con-
sider block structures, JAVA2GGX introduces additional arcs of type block. They are drawn
from a node s to a node t if there is a path from s to t where the first arc on the path is of type
body or bodyDeclarations.

The example in figure 1 has five elements spanning out a block: Two type declarations and
three method declarations. All elements inside these blocks are connected to their root elements
by an additional blue arc of type block. Note that class modifiers are not part of the block and
hence not connected by an additional arc. The same applies to method modifiers: They are not
connected to the method declaration node by a blue arc, but belong to the elements inside the
block of the surrounding type and hence have an incoming arc from there. Finally, elements that
belong to the block of a method have two incoming arcs of type block, one from the method
declaration and one from the surrounding type declaration.

2.4 Access Arcs

During parsing, names are resolved to references between syntactical elements. The parser as-
signs a unique identifier to each declaration of a type, method, or variable. Consequently, each
call to a type, method, or variable uses this unique identifier as reference. This way the parser
detects missing or duplicate declarations as well as global variables hidden by local declarations.
JAVA2GGX displays these references between elements by introducing additional arcs of type
access. There are several situations in which these arcs are drawn:

• A node of type ClassInstanceCreation is considered as a source of an additional
arc that points to a node of type MethodDeclaration (which has its attribute
constructor set to true) if the class instance creation uses a constructor explicitly
given in the source code.

• A node of type MethodInvocation is considered a source of up to three
additional arcs that point to a node of type MethodDeclaration, its parenting
TypeDeclaration, and the related PackageDeclaration. The latter are only
drawn if they do not point to parents of the MethodInvocation. However, a reference
from MethodInvocation to MethodDeclaration is always drawn, thus possibly
indicating a recursive method. In addition, the parenting TypeDeclaration of the
MethodInvocation is also considered a source of another arc of type access
pointing to the parenting TypeDeclaration of the MethodDeclaration. Thus
types referencing each other can be identified without considering all their declared
methods.

Proc. GraBaTs 2010 4 / 12

32

ECEASST

• A node of type SimpleName is considered a source of up to three additional arcs. Since
nodes of type SimpleName can occur in different situations, three cases have to be dis-
tinguished:

– If the name refers to a type, two arcs may point to the TypeDeclaration and the
related PackageDeclaration, but are only drawn if they do not point to parents
of the SimpleName itself.

– If the name refers to a class member variable, one arc points to the related
SingleVariableDeclaration. Another arc points to the parenting
TypeDeclaration. A third arc points to the related PackageDeclaration
if it is not the same as the one related to the SimpleName itself. In addition, the
parenting TypeDeclaration of the SimpleName is also considered a source
of another arc of type access pointing to the parenting TypeDeclaration of
the SingleVariableDeclaration.

– If the name refers to a local variable of a method, a single arc points to the related
SingleVariableDeclaration or VariableDeclarationFragment.

– If the name refers to an enumeration constant, a single arc points to the related
EnumConstantDeclaration.

• A node of type SimpleType is considered a source of an arc pointing to the related
TypeDeclaration. Another arc points to the related PackageDeclaration if it
is not the same as the one related to the SimpleType itself. In addition, the parenting
TypeDeclaration of the SimpleType is also considered a source of another arc of
type access also pointing to the TypeDeclaration.

In figure 1 one can see five blue arcs of type access. All are pointing from the left subgraph
to the right subgraph. The arc most easy to understand is the one from methodInvocation
on the left to methodDeclaration on the right. Obviously the method “talk()” called in
line 4 of SampleClass.java is the one declared in line 6 of AnotherClass.java, which is ex-
pressed by this arc. As explained above, a node of type MethodInvocation may be source
of up to three arcs. Another one is visible in the example, pointing towards a node of type
TypeDeclaration. As one can see, this node represents the type in which the method
“talk()” is declared.

Another arc of type access leads from a node of type ClassInstanceCreation to
a node of type MethodDeclaration. In this case the target is the constructor used for
this class instance creation as declared in line 3 of AnotherClass.java. The type used in this
class instance creation is attached to the node of type ClassInstanceCreation as another
node of type SimpleType. This node also has an outgoing arc pointing to the node of type
TypeDeclaration introduced above. In this case the arc means that in line 4 of Sample-
Class.java a class is instantiated which is declared in line 3 of AnotherClass.java.

Up to here, all arcs started at nodes representing a certain statement with a direct reference to a
method or type. As explained above, parenting nodes are also considered by JAVA2GGX. Hence a
fifth arc of type access exists in figure 1. It leads from the node of type TypeDeclaration
on the left to another node of same type on the right. It is introduced since some elements in

5 / 12 Volume X (2010)

33

Enabling Graph Transformations on Program Code

the subtree on the left side access either the node on the right directly or access elements from
its subtree. Hence by only looking at this arc you can already see that the type “SampleClass”
accesses “AnotherClass” in some way.

2.5 Termination Conditions

In loops of type “for”, “while”, and “do . . . while” there is an expression providing an explicit
termination condition. In the AST nodes of type ForStatement, WhileStatement, and
DoStatement have an outgoing arc of type expression leading to the root of the subtree
representing the termination condition. To gain explicit information about nodes used in this
subtree, additional arcs of type termination are introduced by JAVA2GGX during parsing for
all nodes inside this subtree including the root itself. Thus, whenever there is a path from a node
s of type ForStatement, WhileStatement, or DoStatement to another node t with the
first arc of the path being of type expression, there will be an additional blue arc of type
termination leading from s to t.

3 Low-level Transformations and Analysis

As the abstract syntax graph is a detailed representation of software, it allows for transformations
and analysis on the level of single source code elements and small patterns of few elements. We
refer to these as low-level transformations and analysis in the following, in contrast to high-level
transformations and analysis related to abstract specifications which we will discuss in section 4.

The goal of low-level analysis of program code as discussed in this paper is to determine
whether certain simple constructs expressed by patterns are present or absent in the given source
code. This allows to check for style and programming conventions, e.g. searching for empty
catch clauses or unused method parameters. Since this is known as “static analysis” of source
code, it is no particular feature of JAVA2GGX, but can also be done with many other typical
tools for static code analysis like CHECKSTYLE [Che] or PMD [PMD]. These tools also use
the abstract syntax graph. However, they do not handle graphs as an explicit data structure, but
traverse the AST programmatically. Contrary, patterns to be searched by JAVA2GGX have to be
defined as graph transformation rules instead of relying on programming, thus taking advantage
of the descriptive rules. Since these rules cannot be implemented straightforward, one of the
following strategies is to be used:

• Optimistic rules assume that a given piece of code is correct unless an undesirable structure
is present. In this case, the erroneous structure is placed on the left hand side (LHS) of
the rule. The right hand side (RHS) contains the same structure since changes to the code
are not intended. An additional “error node” is added there, which is a node of a fixed
type that does not appear in normal syntax graphs and that contains a message describing
the detected error. So whenever the erroneous structure is present in a solution, this rule
matches and inserts the error node into the graph.

• Pessimistic rules assume that a given piece of code is wrong unless a certain structure is
present. The LHS of a rule is empty (so that it is always applicable) and correct structures

Proc. GraBaTs 2010 6 / 12

34

ECEASST

are added as negative application conditions, preventing the rule from being applied if they
are found in the graph. The RHS contains only an appropriate error node.

While this seems to be much more complicated on the first glance, it allows for direct combina-
tion of pattern search and program manipulation. With JAVA2GGX, spotted undesirable patterns
can be changed based on transformation rules directly, or pattern search can be performed by the
application of alignment rules. These rules may adjust syntactical divergences before rules for
searching special patterns are used. This is interesting in contexts where not one large software
project is analyzed, but where many similar but different projects are searched, i.e. in e-learning
and automated assessment [KG06, KG08]. In addition, the explicit use of error nodes as markers
allows to store results of a search inside the graph data structure and reuse them later on with
more complex rules. If source code is to be generated out of manipulated syntax graphs, any
additional nodes and arcs introduced by JAVA2GGX are ignored and only nodes belonging to an
abstract syntax tree are used to produce the textual representation.

4 High-level Transformations and Analysis

So far we considered analysis and manipulation of Java code at the level of programming lan-
guage constructs. While this is helpful in the cases introduced so far, source code is often re-
lated to abstract specifications like formal models. Transformations for them are already used
in model-driven software development [BEK+06, JKS06]. However, an issue considered in this
context is that program code is usually derived from specifications unidirectionally with code
generation [HT06] only. The reading and writing access to Java code for graph transformations
allows for more sophisticated approaches of integrating model specifications and program code
since the code can fully participate in such transformations.

4.1 Approach

The reason for fact that (graph) transformations considering source code are usually unidirec-
tional is that generated code does no longer contain the semantics of abstract models. Source
code can thus only be integrated in bidirectional transformations if it follows certain rules that
make an interpretation possible based on unambiguous rules. To overcome the gap between ab-
stract specifications of software and implementations that are partly created manually instead
of being completely generated out of models, we proposed the approach of embedded models
[BSG10]. An embedded models defines a program code pattern that carries the abstract syn-
tax of a formal model. The pattern code is then not used as meta data, but is interpreted and
executed at run time by an execution framework that realizes the execution semantics of the un-
derlying formal model. The pattern code is connected to arbitrary other program code by means
of interface code used for data exchange and initiation of business logic execution.

The architecture of embedded models is illustrated in figure 2: The program code pattern is
integrated in other program code by invocations of interface code and provision of entry points
used by the execution framework. At the same time, transformations exist that use the embedded
model syntax to connect the program code to abstract specifications. By this means the source
code can be integrated in the chain of transformations at the model level.

7 / 12 Volume X (2010)

35

Enabling Graph Transformations on Program Code

Program Code Pattern

Interfaces

Other Code

Specifications

Execution

Framework

Transformation

Program Code

Model n

...

Model 1

Model-to-Model

Transformations

Figure 2: The elements of an embedded model definition. The program code following the
pattern can be interpreted unambiguously so that it can be integrated in model transformations
across different abstraction levels.

One of the embedded models developed so far considers state machine models. Basically,
these models are constituted by a set of classes implementing states and transition contracts,
while transitions are implemented as methods. Figure 3 explains some details: The class at
the top implements a marker interface IState, so it is a state class whose unique name rep-
resents the state’s name. Its methods are marked as transitions by a Java meta data annotation
@Transition whose attributes refer to the target state and a contract class (bottom of figure
3) containing guards and updates. An interface type referred to as “actor” is passed to transition
methods. Its methods are interpreted as action labels which are called when the transition fires.

Guards and updates are implemented as two methods in a contract class, both evaluating
boolean expressions. The method checkCondition acts as a guard, deciding whether the
related transition may fire or not. It uses the current variable values of the state machine for
this decision. The method validate acts as an update validator, indicating whether variables
match the expected value or value range after actions have been performed. Thus it compares the
current values with the values from the point in time before the transition fired. Both methods
access a “variables” type which is a facade type representing the variables constituting the state
space of the state machine.

4.2 Program Evolution by Model Transformation

The use of embedded models allows to consider program code at higher levels of abstraction
and thus to apply high-level transformations, too. As stated above, state machine models are
only one example for embedded models. Thus we will now discuss an example in which we
use both state machine models as well as process models [BG09]. At the level of models a state
machine can be transformed into a process model automatically while losing only just a few
features of state machines that cannot be expressed in process models. Since embedded models
rely on static structures in program code and JAVA2GGX allows to transform these program code
structures into a graph, model transformation rules that are able to transform a state machine
model into a process model or vice versa can be rewritten in order to transform program code
with an embedded state machine into program code with an embedded process model or vice
versa respectively. For a detailed description please refer to our previous publication [GSB09].

The actual set of graph transformation rules used to implement the evolution from state ma-
chine models to process models consists of 21 rules. At first, two rules are concerned with

Proc. GraBaTs 2010 8 / 12

36

ECEASST

Contract Definition in Source Code

public class AfterMeasurementState implements IState

{

@Transition(target = UpUpState.class , contract = BeginUpUpContract.class)

public void beginUpUp(MeasurementModule actor) throws MeasurementAbortedException

{

 actor.doMeasure ();

}

// ...

}

State Definition

Target State Pointer Contract Pointer

Action Label

Transition

State and Transition Definition in Source Code

}

public class BeginUpUpContract implements IContract< IMeasurementVariables >

public boolean checkCondition(IMeasurementVariables vars)

{

 return (!vars.getAbort() && !vars.getRestart() && vars.getTooLow());

}

{

public boolean validate(IMeasurementVariables before , IMeasurementVariables after)

{

 return (after.getNumberOfWorkers() == (before.getNumberOfWorkers() + before.getWorkerDistance()));

}

Contract Definition

Variable DefinitionsCurrent Variable Values

Guard

Update

Variable Labels
Current Variable Values

Cached Variable Values

Variable Labels

Figure 3: A state definition with an outgoing transition and its contract. The first method of the
contract checks a pre-condition with the current variable values, while the second method checks
a post-condition by comparing the current values to previous values.

converting states to decision nodes and transitions to activity nodes. One of these rules – chang-
ing states to process nodes and creating activity nodes – is shown in figure 4 in a simplified
manner. Due to the use of embedded models, elements to be moved can easily be identified by
their annotations on the left hand side of the rule and thus reassembled on the right hand side.
Similarities between state machines and process models allow to reuse larger parts of existing
program code, e.g. complete method bodies.

After nodes have been converted or created, a set of six rules applies changes for cleaning
up the graph, like reordering imports or removing unnecessary annotations. These rules are not
necessary for a valid embedded process model, but they remove unused nodes, thus helping to
keep the graph small. Two additional rules remove contracts not longer needed as well as useless
decision nodes that have been introduced by rules applied earlier. Afterwards, the set of nodes
is complete, so three rules can be applied for marking start nodes, end nodes, and merge nodes.
An additional rule is necessary for splitting up activity nodes since an embedded state machine
allows to have more than one action label in transitions, but only one activity per activity node is

9 / 12 Volume X (2010)

37

Enabling Graph Transformations on Program Code

Figure 4: Simplified graph transformation rule for transforming states into process nodes. Nodes
deleted from the syntax graph are marked in red while newly created nodes are marked in green.
Some of the preserved nodes are renamed during transformation. Note how contents from the
original state node are moved to a newly created activity node, while contents from the original
extra contract node are moved into the existing process node.

allowed in embedded process models. Another set of seven rules is finally concerned with some
adjustments to the code.

For a sample instance of a state machine containing 5 state classes and 5 contract classes,
processing the 10 files with JAVA2GGX resulted in a graph with 331 nodes and 694 arcs. Trans-
formation was finished after a total amount of 131 rule applications. Most applications where
used for housekeeping on the graph (e.g. 36 for correcting “block” arcs, 32 for copying import
statements and 14 for removing unused imports). On an Intel Core2 Duo CPU at 3.17 GHz and
with 4 GB RAM the transformation took about 10 seconds.

4.3 Transformation for State Machine Verification

The transformations presented in the previous subsection can be called “internal” transformations
since they consider only program code and its abstract syntax tree. However, we can of course
also think of “external” transformations, where the abstract syntax tree of the program is part of
a larger context. This is obviously the case if source code is derived from models by a sequence
of transformation or generation steps. However, this larger context may also be a triple graph
grammar, where the syntax graph is one element of the triple. The second element of the triple
can be the representation of state machines as used by a verification tool (e.g. UPPAAL [LPY97])
as we have already shown [Str08]. Insufficient graph manipulating capabilities of UPPAAL do
not allow to realize synchronous manipulations of models in UPPAAL and embedded models in
source code, but transformation rules allow to propagate changes trough the triple graph structure
in both directions.

Proc. GraBaTs 2010 10 / 12

38

ECEASST

5 Related Work

The principles of graph transformations for program manipulations have already been discussed
some years ago in the context of refactoring [EJ04]. Tools like SPOON [PNP06] realize this
based on graph traversals without providing the graph explicitly. More recent tools focus on
meta modeling and integration into the Eclipse Modeling Framework (EMF) – e.g. JAMOPP
[HJSW09] or the MODISCO project [MoD] – and thus come close to the high-level transforma-
tions described above in a more abstract way. For UML diagrams, such transformations have
also been realized for AGG [FM07].

With JGRALAB it is possible to transform java source code into so-called TGraphs which can
be used for declarative graph queries with a query language named GReQL [JGr]. While this
allows for detailed program analysis based on graphs, it does not provide means for transforma-
tions of program code. The same applies to tools for static code analysis (like PMD as already
mentioned above). They use syntax graphs or trees and allow to specify patterns to be searched,
but do not make the graphs generally accessible for transformations.

6 Conclusion

In this contribution we introduced JAVA2GGX, a tool for generating explicit graph representations
out of abstract syntax graphs of Java programs and vice versa. Using these graphs it is possi-
ble to apply static program analysis and low-level transformations for refactoring using graph
transformation rules. The benefits are that any means known from graph transformations (e.g.
use of additional node types as markers) can be applied to these problems this way. In addition,
high-level transformations are also possible if appropriate code structures (e.g. embedded mod-
els) are used. By this means another benefit for software evolution is achieved, which is a tighter
integration of model transformation and code transformation.

Future work is necessary with respect to content as well as to implementation. At the time
of writing, JAVA2GGX can be used as a standalone tool and as a plugin for the development
environment Eclipse. This is sufficient for internal transformations, but not for external ones.
With respect to content, many other transformations can be developed than the ones shown in
this contribution, for different purposes like analysis, verification, and evolution of software.

Bibliography

[AGG] AGG website. http://tfs.cs.tu-berlin.de/agg/.

[BEK+06] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, E. Weiss. EMF Model
Refactoring based on Graph Transformation Concepts. In Proceedings of Third In-
ternational Workshop on Software Evolution through Transformations (SETra’06).
Volume 3. Natal, Brazil, sept 2006. Electronic Communications of the EASST.

[BG09] M. Balz, M. Goedicke. Embedding Process Models in Object-Oriented Program
Code. In Proceedings of the First Workshop on Behavioural Modelling in Model-
Driven Architecture (BM-MDA). 2009.

11 / 12 Volume X (2010)

39

Enabling Graph Transformations on Program Code

[BSG10] M. Balz, M. Striewe, M. Goedicke. Continuous Maintenance of Multiple Abstrac-
tion Levels in Program Code. In Proceedings of the 2nd International Workshop on
Future Trends of Model-Driven Development - FTMDD 2010, Funchal, Portugal.
2010.

[Che] CheckStyle Project. http://checkstyle.sourceforge.net.

[EJ04] N. van Eetvelde, D. Jannsens. Extending graph rewriting for refactoring. In Proceed-
ings of International Conference of Graph Transformation (ICGT) 2004. Springer, 9
2004.

[FM07] A. Folli, T. Mens. Refactoring of UML models using AGG. ECEASST 8, 2007.

[GSB09] M. Goedicke, M. Striewe, M. Balz. Support for Evolution of Software Systems using
Embedded Models. In Design for Future – Langlebige Softwaresysteme. 2009.

[HJSW09] F. Heidenreich, J. Johannes, M. Seifert, C. Wende. JaMoPP: The Java Model Parser
and Printer. Technical report, Technische Universität Dresden, 2009.

[HT06] B. Hailpern, P. Tarr. Model-driven development: The good, the bad, and the ugly.
IBM Systems Journal 45(3):451–461, 2006.

[JGr] JGraLab. http://userpages.uni-koblenz.de/~ist/JGraLab.

[JKS06] J. Jakob, A. Königs, A. Schürr. Non-materialized Model View Specification with
Triple Graph Grammars. In Corradini et al. (eds.), Proceedings of the 3rd Interna-
tional Conference on Graph Transformation (ICGT) 2006, Natal. Lecture Notes in
Computer Science 4178, pp. 321–335. Springer, 2006.

[KG06] C. Köllmann, M. Goedicke. Automation of Java Code Analysis for Programming Ex-
ercises. In Proceedings of the Third International Workshop on Graph Based Tools.
Electronic Communications of the EASST 1. 2006.

[KG08] C. Köllmann, M. Goedicke. A Specification Language for Static Analysis of Student
Exercises. In Proceedings of the International Conference on Automated Software
Engineering. 2008.

[LPY97] K. G. Larsen, P. Pettersson, W. Yi. UPPAAL in a Nutshell. Int. Journal on Software
Tools for Technology Transfer 1(1–2):134–152, Oct 1997.

[MoD] MoDisco Project. http://www.eclipse.org/MoDisco/.

[PMD] PMD Project. http://pmd.sourceforge.net/.

[PNP06] R. Pawlak, C. Noguera, N. Petitprez. Spoon: Program Analysis and Transformation
in Java. Technical report 5901, INRIA, 2006.

[Str08] M. Striewe. Using a Triple Graph Grammar for State Machine Implementations.
In Ehrig et al. (eds.), Proceedings of the 4th International Conference on Graph
Transformations (ICGT) 2008, Leicester. LNCS 5214, pp. 514–516. 2008.

Proc. GraBaTs 2010 12 / 12

40

Electronic Communications of the EASST
Volume X (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Reachability Analysis on Timed Graph Transformation Systems

Christian Heinzemann, Julian Suck, Tobias Eckardt

12 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

41

http://www.easst.org/eceasst/

ECEASST

Reachability Analysis on Timed Graph Transformation Systems

Christian Heinzemann, Julian Suck, Tobias Eckardt

Software Engineering Group
Heinz Nixdorf Institute
University of Paderborn
Warburger Strasse 100

D-33098 Paderborn, Germany
chris227@upb.de|jsuck@mail.uni-paderborn.de|tobie@upb.de

Abstract: In recent years, software increasingly exhibits self-* properties like self-
optimization or self-healing. Such properties require reconfiguration at runtime in
order to react to changing environments or detected defects. A reconfiguration might
add or delete components as well as it might change the communication topology of
the system. Considering communication protocols between an arbitrary number of
components, reconfiguration and state-based protocol behavior are no longer inde-
pendent from each other and need to be verified based on a common formalism. Ad-
ditionally, such protocols often contain timing constraints to model real-time prop-
erties which are of integral importance for the safety of the modeled system and thus
need to be considered during the verification of the protocol. In current approaches
either reconfigurations or timing constraints are not considered. Existing approaches
for the verification of timed graph transformation systems lack important constructs
needed for the verification of state-based real-time protocol behaviors. As a first
step towards a solution to this problem, we introduced Timed Story Driven Mod-
eling ([HHZ09]) as a common formalism integrating state-based real-time protocol
behaviors and system reconfigurations based on graph transformations.

In this paper, we introduce a framework allowing to perform reachability analysis
based on Timed Story Driven Modeling. The framework allows to compute the
reachable timed graph transition system based on an initial graph and a set of timed
transformation and invariant rules.

Keywords: Verification, Real-time Systems, Graph Transformation Systems, Reach-
ability Analysis

1 Introduction

In recent years, software increasingly exhibits self-* properties like self-optimization or self-
healing. Such properties require reconfiguration at runtime in order to react to changing environ-
ments or detected defects. This causes a significant increase in the complexity of the software as
also the reconfiguration process has to be controlled by the software. As software often operates
in safety critical environments, it has to meet highest quality standards. Formal verification of
safety and liveness constraints as well as verification of joint structural and behavioral constraints
([KG07]) addresses these requirements.

1 / 12 Volume X (2010)

42

mailto:chris227@upb.de$|$jsuck@mail.uni-paderborn.de$|$tobie@upb.de

Reachability Analysis on Timed Graph Transformation Systems

For embedded or real-time systems timing constraints for the software have to be taken into
account during verification. Model Checkers like Uppaal1 address these issues as they allow to
check timed temporal logic formulas based on timed automata ([Alu99]). Standard model check-
ers for real-time systems, however, are not able to consider changing system topologies resulting
from system reconfigurations. Graph based model checkers like Groove ([Ren08]) support dy-
namic topologies, but are not capable of verifying timing constraints. Unfolding the state-space
described by the graph transformation rules and using model checkers to verify the result does
not work for constraints referencing both, structural and behavioral parts of the system. Exist-
ing approaches combining graph transformations and real-time constructs (cf. Section 6) come
with restrictions that do not allow to model timed behavior to the extent that is needed for our
systems. As a solution, we combine state-based real-time verification as it is realized in Uppaal
with dynamic reconfiguration specified by graph transformation rules.

In this paper, we introduce a framework for timed reachability analysis based on Timed Story
Driven Modeling ([HHZ09]). In [HHPS10], reconfiguration and state-based behavior are an-
alyzed independently. There, only pairs of automata were checked and an induction over the
reconfigurations of a regular architecture was used to show that no forbidden communication
structures can arise. This ensures, that only such communication pairs can arise, that have been
verified before. In this paper, we use Timed Story Charts ([HHZ09, HHH10]) as an explicit com-
mon formalism for the verification. This enables us to specify and verify arbitrary constraints
that affect both, state-based protocol behavior and structural system state at the same time, e.g.
that a reconfiguration may only take place if certain communication protocol is in a specific state.

Example Scenario Our example scenario stems from the RailCab2 project. The RailCab sys-
tem consists of autonomous RailCabs that are fully controlled by software. RailCabs can form
contactless convoys to reduce energy consumption. A convoy of RailCabs always needs one co-
ordinating RailCab in order to prevent oscillation of the shuttle distances. A component instance
model of a convoy with three RailCabs is shown in Figure 1 where RailCab rc1 coordinates the
convoy.

rc1:RailCab rc2:RailCab rc3:RailCab

coordinatorRole
1

coordinatorRole
2

memberRole memberRole

Figure 1: Component instances for the RailCab example.

Outline The remainder of this paper is structured as follows. First, we give a brief overview
of Mechatronic UML. In Section 3, we explain how a reachability analysis is performed using
Timed Story Driven Modeling while Section 4 provides a description of the framework. We
present the results of our evaluation in Section 5 and related work in Section 6. Section 7 con-
cludes the paper.

1 http://www.uppaal.com/
2 http://www.railcab.de

Proc. GraBaTs 2010 2 / 12

43

http://www.uppaal.com/
http://www.railcab.de

ECEASST

2 Mechatronic UML

In this section, we briefly introduce Mechatronic UML, an adaptation of the UML. It provides
extensions for modeling and verifying real-time systems and hybrid systems integrating continu-
ous control components. Section 2.1 describes the system architecture of the system and Section
2.2 gives a short overview of Timed Story Driven Modeling with respect to Mechatronic UML.

2.1 System architecture

We use a component-based system architecture based on Mechatronic UML components. The
communication between components is modeled with parameterized coordination patterns as
introduced in [HHPS10]. Parameterized coordination patterns are used to specify 1 to n com-
munication protocols between communication partners, called roles for cardinality 1 or multi
roles for cardinality n, respectively. Roles are instantiated at the ports of a component in order to
provide the corresponding protocol.

The behavior of roles is specified by Real-Time Statecharts ([GB03]). In case of a multi
role, a parameterized Real-Time Statechart ([HHPS10]) is used to define the behavior of all sub-
roles. Figure 2 shows an example of a parameterized pattern including the Real-Time Statecharts
defining the role behaviors.

coordinatormember n

ConvoyCoordination

{ordered}

waitUpdate sendAck

update

ack

{c3}

[c3 ≤ 150]

[1;1]

[c3 ≤ 1]
[1;1]

rtsc : memberRole | Clocks: c3

idle

sendUpdate awaitAck

nextk?

/ update

ack
nextk+1!

{c1}

[c1 ≤ 10] [10;10] [c1 ≤ 29]

[1;1]

rtsc : coordinatorRole | Clocks: c1

Role behavior Role behavior

Figure 2: Definition of a Parameterized Coordination Pattern

The coordinator role sends an update event to the member role which answers with an ac-
knowledgement. The internal synchronization channel next is used to synchronize the different
sub-roles of the coordinatorRole as they are not independent in this scenario. The channel is
parameterized with a parameter k referencing to the kth instance of the statechart. Thus, one
sub-role triggers the next one in the example.

Following [HHPS10], we use an additional adaptation statechart to synchronize the roles and
to manage creation and deletion of roles. An excerpt of an adaptation statechart for the example
is shown in Figure 3 on the left.

3 / 12 Volume X (2010)

44

Reachability Analysis on Timed Graph Transformation Systems

noConvoy convoy

coordinate?
createPort(1)

createPort(n + 1)

sendUpdatesnext1!
c3 ≤ 150

{c2}
0 ≤ c3 ≤ 150 c3 ≤ 149

nextn+1?

addMember

c3 ≤ 149[10;10]

[10;10]

[1;1]

rtsc : adaptSC | Clocks: c3

this cr : coordRolehas
<<++>>

RailCab::createPort(int num)

n := n + 1

<<++>>

k := num

createStatechart(num)

ad : RailCab::createPort(int num)

newFollower?

Figure 3: Adaptation Statechart for a Multi Port

The adaptation statechart is initially in state noConvoy. The decision which RailCab coordi-
nates the convoy is made in another statechart which is omitted here. If the RailCab is chosen to
coordinate, it changes its state to addMember, thereby performing the side effect createPort(1) of
the transition. The side effect is a method of the component being specified by the story diagram
([Zün01]) on the right in Figure 3. The side effect in this example simply creates a new port. The
deadline [10;10] of the transition denotes that this reconfiguration takes at least 10 time units
and at most 10 time units. After reaching the state convoy, the invariant forces the statechart to
switch to state sendUpdates every 150 time units, thereby triggering the first coordinatorRole to
send the update.

2.2 Timed Story Driven Modeling

The Timed Story Driven Modeling ([HHZ09]) approach is based on Timed Story Patterns and
Timed Story Diagrams. Timed Story Patterns use the syntax of Story Pattern ([Zün01]), which
are a short-hand notation for graph transformations. In Story Patterns, the left hand side and the
right hand side are depicted in one diagram. Elements being deleted by the transformation are
labeled with <<-->>, elements being created with <<++>>. Additionally, Timed Story Patterns
use the same time extensions introduced for timed graph transformation systems in [HHPS10,
HHH10], i.e., they operate on timed graphs which contain clocks like timed automata ([Alu99]),
each being associated with a subgraph of the graph. The same clock can occur multiple times,
once for each occurrence of the subgraph. Therefore, we use the term clock instance to denote
the instances of a clock. The representation of clock values is realized using clock zones ([Alu99,
BY03]), as in timed automata.

In Timed Story Pattern, three kinds of rules are used: transformation rules, invariant rules,
and clock instance rules. A clock instance rule adds clock instances to the graph which are used
by the transformation rules and the invariant rules to specify time constraints. Due to space
limitations, we only show how these rules are implemented in our framework in Section 4.2.

Timed Story Diagrams differ from normal story diagrams only by the fact that they use Timed
Story Patterns instead of normal Story Patterns. Based on Timed Story Diagrams, we defined
Timed Story Charts [HHH10] that allow us to execute Real-Time Statecharts using Timed Story
Diagrams. Timed Story Charts preserve the semantics of Real-Time Statecharts while Real-Time
Statecharts can be mapped to Uppaal timed automata ([BGHS04]). Thus, Timed Story Charts

Proc. GraBaTs 2010 4 / 12

45

ECEASST

have a proper semantics defined over timed automata. The core idea is to represent the statecharts
and their states as objects and to provide graph transformation rules specifying the state changes
of the transitions. The currently active state of the statechart is represented by an ActiveState-
object. The transformation of Real-Time Statecharts to Timed Story Charts has been partially
automated ([HSJZ10]).

3 Reachability Analysis

The reachability analysis will compute the Timed Graph Transition Systems (TTS) based on
the given transformation rules and invariants. It represents the complete reachable behavior. In
general, the TTS may be infinite. Thus, it cannot be guaranteed that the algorithm will eventually
terminate for a given set of rules. This is a general problem when computing Graph Transition
Systems. The TTS can be defined as follows, however.

Definition 1 (Timed Graph Transition System (TTS)) Let G be the set of all possible timed
graphs, R a set of transformation rules, I a set of invariant rules. The Timed Graph Transition
System (TTS) is a triple (S,s0,T) where S represents the states of the TTS, s0 ∈ S is the initial
state and T represents the transitions. A state s ∈ S is a tuple s = (g,z) with g ∈ G and z a
non-empty clock zone over the clock instances contained in g. In s0, all clock instances are 0.

There exists a transition t from s1 to s2, s1
t−→ s2, iff there exists a transformation rule r ∈R

such that s2 is a successor state of s1.

The states are tuples consisting of a timed graph and the current clock interpretations rep-
resented by a clock zone ([Alu99]). The clock zone contains intervals for all clock instances
representing the possible values as well as the differences between those values. The definition
of the TTS is analogous to the definition of zone graphs ([Alu99, BY03]), the only difference is
that the states contain a timed graph instead of an automaton location.

The computation starts with the initial graph and all clocks being 0. Then, possible successors
are computed according to Definition 2. The TTS contains transitions from one state to all its
successors.

Definition 2 (Successor State) Let s1 = (g1,z1),s2 = (g2,z2) states of a TTS. s2 is a successor
state of s1 iff
• there exists a transformation rule r ∈R such that r transforms g1 into a graph isomorphic

to g2 and
• z2 = (((z1∧ I(s1)) ⇑)∧ I(s1)∧guard(r))[reset(r)] and z2 non-empty.

The definition of a successor state is analogous to the one of timed automata ([Alu99]). The
only difference is that the change in the TTS results from the application of a transformation rule
instead of an automaton transition. The computation of the successor clock zone remains the
same. First, the clock zone is intersected against all constraints of invariant rules applicable to g1
denoted by I(g1). Then, time passes (⇑), which is implemented by removing the upper bounds
of all clocks (cf. [BY03]). Afterwards, the intersection against the invariants is repeated. Then,
the resulting clock zone is intersected with the time guards of the applied transformation rule and

5 / 12 Volume X (2010)

46

Reachability Analysis on Timed Graph Transformation Systems

the rules’ clock resets are executed. We currently restrict ourselves to guards of the form c ∼ n
where c is a clock instance, ∼∈ {<,≤,=,≥,>}, and n ∈ N, i.e., comparing the value of a clock
instance with an integer. Invariants are further restricted to comparisons < and ≤. Please note
that there can exist more than one possible successor state for the same transformation rule as
multiple matchings can be found.

In order to obtain a finite TTS for reactive systems running in a loop, isomorphic states of the
TTS are merged into one state. Two states are isomorphic, iff their graphs are isomorphic to each
other and their clock zones are identical.

4 Verification Framework

We have implemented the reachability analysis introduced in Section 3 into our framework.
In the following subsections, we introduce the general architecture of our framework at first.
Second, we give an introduction how rules can be modeled, third, we explain how the timing
computations are performed, and finally, we give a brief idea of constraints that can be checked
using the framework. Part of the framework, not including the timing capabilities, has been
shown in [HSJZ10].

4.1 Architecture

An implementation of a reachability analysis as specified in Section 3 requires additional rules
which compute the TTS. Specifying concrete rules for the TTS generation for each example by
hand is a tedious, error-prone task. Therefore, we provide a framework which requires the user
to specify an initial graph and a set of rules, only. The remaining tasks, e.g. the application of
rules, are integrated within the framework. Figure 4 shows the class diagram of the framework.

«JavaBean»
Node
tt H hC h

ClockInstance
type: String
valid: Boolean = true
ClockInstance ():constructor
toString ():String
ClockInstance (id:String , type:String):constructor

InvariantRule

getCIsOfInvariants (step:StepGraph, clockInstances:HashSet<ClockInstance>)

ReachabilityComputation
DEBUG: Boolean = false

getApplicableInvariants (step:StepGraph, invariants:HashSet<ClockConstraint>)
computeNormalizationVectorPerRule (nv:HashMap<String, Integer> , rule:Rule)
computeNormalizationVector ()
initialize ():StepGraph
expand(step:StepGraph)
addAllClockInstances (step:StepGraph):HashSet<ClockInstance>
createRules ()
unifyGraphs (succ:StepGraph)
computeNormalizationVectorForStep (step:StepGraph):HashMap<Clock,Integer>
createInitialGraph ():StepGraph
processGraph(step:StepGraph, scc:HashSet<ClockConstraint> ,
 resets:HashSet<Clock> , invariants:HashSet<ClockConstraint>)
computeReachableGraphs ()

Rule

addClockInstances (step:StepGraph, clockInstances:HashSet<ClockInstance>)

StepGraph
name: String
toString ():String

TransformationRule

apply (step:StepGraph, graphsAndCIs:HashMap<StepGraph, HashSet<ClockInstance>>)

Clock
id: String = ""
name: String = ""

SimpleClockConstraint

clone ():Object

String

cd Framework

ciType

*

«usage»
hasNode

* 0..1

contains

0..1

«usage»
has

*

hasInvariantRule

*

hasTransformationRule

*

graphs

*

todo

0..1
has

*has

1

0..n
uses

Figure 4: Class Diagram of the Verification Framework

The abstract class ReachabilityComputation encapsulates the whole functionality for comput-

Proc. GraBaTs 2010 6 / 12

47

ECEASST

ing the timed graph transition system. It contains two abstract methods createInitialGraph() and
createRules(). Both have to be implemented by the user, whereas the former defines the initial
graph and the latter specifies which graph transformation rules are to be used for the reachability
computation and which time constraints these rules have.

Graphs are represented by objects of the class StepGraph. They contain objects of the class
Node. To represent different types of nodes in a graph, subclasses of Node can be created. Edges
between nodes are represented by associations. The createInitialGraph()-method mentioned
above uses the specified nodes and edges to create the initial graph.

As already mentioned in Section 2.2, there exist three different kinds of rules in a timed graph
transformation system, namely timed graph transformation rules, invariant rules and clock in-
stance rules. The first two are represented by the classes TransformationRule and InvariantRule,
respectively, whereas the third

is represented by the method addClockInstances(). The next section contains more detailed
information on how to implement transformation and invariant rules.

4.2 Modeling Rules

Timed graph transformation rules are represented by the abstract class TransformationRule. It
contains an abstract method apply(), which has to be implemented by subclasses to specify a
concrete timed graph transformation rule. As parameters, this method receives a graph on which
it is to be applied and a reference to a mapping. After the termination of the method, the mapping
contains all reached successor graphs together with their respective clock instances used for the
application of the rule.

Figure 5 shows an implementation of the method apply() as a Story Diagram modeling the
transition from the state sendAck to the state waitUpdate of the statechart of the role member (cf.
Figure 2). The Story Diagram is subdivided into three Story Activities. The first activity checks
whether the rule is applicable, which is the case if the sendAck-state is the active state in the
given statechart. If the rule is applicable, the second activity sets the active state from sendAck
to waitUpdate. Finally, the third activity enqueues the ack()-Event into the event queue of the
statechart of the coordinator port.

Invariant rules are specified by subclasses of InvariantRule. Subclasses implement the method
getCIsOfInvariant(), which receives a graph on which the rule is to be applied and a set as
parameters. After the termination of the method, the set contains all clock instances of the graph
for which the time invariant specified by the rule is applicable.

Figure 6 shows a concrete example of a Story Diagram implementing the method getCIsOfIn-
variant(). The rule represents the invariant c3 ≤ 150 of the state convoy of the adaptation stat-
echart of the coordinator role (cf. Figure 2). The invariant has to hold whenever the adaptation
statechart’s active state is the convoy-state. The activity matches to all structures which model
exactly this situation. Whenever a matching structure is found, the corresponding clock instance
is inserted into the set.

7 / 12 Volume X (2010)

48

Reachability Analysis on Timed Graph Transformation Systems

create and deliver sent event

1: enqueue(ackEvent)

«create»
ackEvent: Event

name := "ack()"

conn: Connectorsc_succ
succ

shPort: ShuttlePort

coPort: CoordPorttgtQueue: EventQueue

Match the precondition and create the copy

sc: RailCab_RailCab_shuttlePort

source: State
name == "sendAck"

as: ActiveState

step
«create»

succ: StepGraph := (StepGraph) step.copy()

Execute transition
«create»

cis: HashSet<ClockInstance>

1: put(succ, cis)

succ

as_succ: ActiveState

sc_succ: RailCab_RailCab_shuttlePort

source_succ: State

graphsAndCIs
target_succ: State

name == "waitUpdate"

Trans_sendAck_waitUpdate_1::apply(step: StepGraph, graphsAndCIs: HashMap<StepGraph, HashSet<ClockInstance>>): Void

adTrans_sendAck_waitUpdate_1::apply()

«create»
contains source

targethasSC

hasQueue

in

contains

in

active

«create»
succ

[each time]

[end]

index[as]index[source]

index[sc]

«create»
active«destroy»

active

in

Figure 5: Story Diagram of the Transformation Rule, Modeling the Transition from sendAck to
waitUpdate

convoy_1::getCIsOfInvariants(step: StepGraph, clockInstances: HashSet<ClockInstance>): Void

Match the invariant structure
state: State

name == "convoy"

step

sc: Statechart_for_RailCab_AdaptationStatechart

1: add(ci)

as: ActiveState

ci: ClockInstance
type == "c3"

clockInstances

{ ci <= 150 }

adconvoy_1::getCIsOfInvariants()

in

hasNode

active

clockInstances

hasNode

in

hasNode

[end]

Figure 6: Story Diagram of the Invariant Rule, Modeling the Invariant of State convoy

4.3 Performing time computations

All time computations, i.e. operations on clock zones, are performed using the Uppaal DBM
(UDBM) library3. The C/C++-library, as originally implemented for the Model Checker Uppaal,
efficiently implements all necessary operations on clock zones (up or delay (⇑), intersection (∧),
clock resets ([reset(r)])) by using the Difference Bound Matrix (DBM) data structure as defined
by Dill ([Dil90]) and, in addition to that, by applying very efficient memory management.

Technically, we access the UDBM library using the provided Ruby binding in connection with
a (local) client/server-communication between our Java implementation and the Ruby implemen-
tation. In Java, clocks, clock zones and clock constraints are represented as classes providing the
corresponding operations on those instances as methods. This makes the binding to the UDBM
library completely transparent for the developer and allows insertion and removal of clock in-
stances which is not directly supported by the UDBM. In Java, clock instances can be created
like normal objects. During runtime, a given clock zone is then transformed into ruby code as

3 http://www.cs.aau.dk/∼adavid/UDBM/

Proc. GraBaTs 2010 8 / 12

49

http://www.cs.aau.dk/~adavid/UDBM/

ECEASST

well as the desired operation is transformed. This ruby code is sent to the ruby server, which
executes it and sends back the resulting clock zone as an encoded string. This string is finally
transformed back into a clock zone object representing the result of the operation.

4.4 Verification of constraints

Currently, our framework only supports the verification of CTL (Computation Tree Logic) for-
mulas having the form EFϕ or ¬AGϕ where ϕ is a graph invariant. Thus, it is possible to check
whether a specific subgraph eventually occurs in the graph or to check whether a subgraph can
never occurs in the graph. Such constraints are modeled as rules which print out a message in
case they are fulfilled or not fulfilled, respectively. A formula EFϕ is fulfilled if the left hand
side of the corresponding rule can be matched to the graph. A formula ¬AGϕ is not satisfied if
the left hand side cannot be matched. Both is possible using Story Diagrams. Using the TTS,
it is also possible to identify deadlocks, as these are simply reachable states with no outgoing
transitions.

5 Evaluation

We implemented the convoy coordination example shown in Figures 2 and 3 using the pattern
and the provided statecharts. Then, we generated partial Timed Story Charts and added the
missing parts, e.g. the statechart synchronization channels and the recipients of sent messages.
This resulted in 15 transformation rules and 13 invariant rules. In this case, we only needed three
clock instance rules, one for each statechart, as we could create a statechart instance as a whole,
along with all its clocks.

The number of RailCabs in a convoy was restricted to a maximum number in order to obtain
a TTS for different maximum convoy sizes. Then, we used our framework described in Section
4 to compute the TTS. The results are shown in Table 1.

max convoy size # graphs in TTS runtime (s) runtime (s) optimized max. graph size
2 17 2 1 37
3 52 21 2 52
4 112 125 6 67
5 203 545 16 82
6 329 1856 39 97

Table 1: Evaluation results for different convoy sizes

A convoy size of 2 corresponds to one leading RailCab and one convoy member RailCab, i.e.,
the leading RailCab has one coordinatorRole statechart instance. For each additional RailCab
in the convoy, an additional instance is added. We computed the TTS for our example with
a maximum convoy size of 6 RailCabs because the timing constraints in our example do not
support larger convoys. We recently found a major performance bug in our implementation that
yielded a significant improvement of our runtime as shown in Table 1. The results indicate that
the runtime grows exponentially in the number of reached graphs while the maximum graph size

9 / 12 Volume X (2010)

50

Reachability Analysis on Timed Graph Transformation Systems

grows constantly as expected. The growth in runtime results from the high number of clock
instances and the expensive timing computations which consume about 66% of the runtime.
Additionally, our isomorphism check on graphs turned out to be inefficient ([HSJZ10]). The
timing computations along with the definition of isomorphic states cause a certain blowup in
the number of reached states, as isomorphic graphs had to be expanded more than once because
of differences in the clock zones. Finally, isomorphic states were reached on all paths and the
computation terminated.

6 Related Work

In the field of timed graph transformation systems, there exist several other approaches. The
MOMENT2 framework ([BÖ10]) provides graph transformations based on MOF meta models.
The approach supports one unresetable clock per object, timers, that trigger actions, and timed
values which can be increased or decreased at a certain, fixed rate. The real-time graph rewrite
model checker Real-Time Maude ([ÖM07]) provides object oriented graph transformations in a
textual syntax, but it does not support invariant rules requiring subgraph changes. The approach
by Rivera et al. ([RDV09]) provides only one global clock and durations for the execution of
rules, but no verification or guarding of rules by time constraints. De Lara et al.([LV10]) map
their graph transformation rules to timed Petri nets. Time is not actually part of the model, but
annotated as an interval in which the transformation can be executed after a match has been
found. In [THRB10], stochastic graph transformations are introduced. The simulation of these
transformations incorporates a scheduling that is based on continuous time and executes a rule
at a randomly generated point in time. A drawback of all approaches is their lack of support for
flexible clock creation with resets and the specification of time guards at the same time. This,
however, is needed for the system models we employ.

There exist some approaches for checking graph transformations without the possibility to
consider timing constraints. The Groove project supports reachability analysis on labeled graphs,
as well as checking graph based LTL formulas on the graph transition system ([Ren08]). The
approach by König et. al. [KK08] uses an approximation technique that maps a possibly infinite
graph transition system to finite Petri graphs and verifies the specified formula on this Petri graph
structure. The inductive invariants introduced in [GS04] support infinite state spaces, as well as
they only require a static analysis on the set of rules showing that a forbidden graph cannot be
produced. It is not possible, however, to verify properties that cannot be depicted as a graph, like
deadlock freedom, for example.

Bauer et. al. provide a verification approach for dynamic communication protocols ([BSTW06])
using over- and underapproximation of the system in order to verify LTL (Linear-time Tempo-
ral Logic) formulas with first-order quantification on objects. The approach supports infinite
numbers of communicating objects and finite message queues.

The timed model checker Uppaal provides the ability to check timed systems, but not the evo-
lution of the system in terms of adding new statechart behaviors at runtime. The BIP framework
([BS10]) also provides real-time components and connectors with extensive analysis approaches,
but does not support reconfigurations, either.

Proc. GraBaTs 2010 10 / 12

51

ECEASST

7 Conclusions

In this paper, we have shown a technique to perform a reachability analysis on Timed Story
Diagrams, a dialect of graph transformation systems extended by the notion of time. We use
Timed Story Charts as a common formalism to perform a reachability analysis for dynamic real-
time communication protocols whose structural evolution is specified by graph transformations.

As future work, we plan to extend our framework by the possibility to verify more complex
timing constraints, as introduced in [KG07]. We will also investigate the possibility of applying
existing abstraction and approximation techniques to the timed graph transformation systems in
order to be able to handle larger state spaces and to obtain a more efficient verification procedure.
Finally, we will try to fully automate the Timed Story Chart generation by adding generation of
synchronizations and message recipients.

Bibliography

[Alu99] R. Alur. Timed Automata. In Halbwachs and Peled (eds.), Proc. of the 11th Inter-
national Conference on Computer Aided Verification (CAV ’99), July 6-10, 1999,
Trento, Italy. Lecture Notes in Computer Science 1633, pp. 8–22. Springer, 1999.

[BGHS04] S. Burmester, H. Giese, M. Hirsch, D. Schilling. Incremental Design and Formal
Verification with UML/RT in the FUJABA Real-Time Tool Suite. In Proc. of the
International Workshop on Specification and Validation of UML Models for Real
Time and Embedded Systems, SVERTS2004. Pp. 1–20. October 2004.

[BÖ10] A. Boronat, P. C. Ölveczky. Formal Real-Time Model Transformations in MO-
MENT2. In Proc. of the 13th International Conference on Fundamental Approaches
to Software Engineering, FASE 2010. Pp. 29–43. 2010.

[BS10] S. Bliudze, J. Sifakis. Causal semantics for the algebra of connectors. In Formal
Methods in System Design. Volume 36(2), pp. 167–194. Springer, 2010.

[BSTW06] J. Bauer, I. Schaefer, T. Toben, B. Westphal. Specification and Verification of Dy-
namic Communication Systems. In Application of Concurrency to System Design,
2006. ACSD 2006. Sixth International Conference on. IEEE Computer Society
Press, 2006.

[BY03] J. Bengtsson, W. Yi. Timed Automata: Semantics, Algorithms and Tools. In Desel
et al. (eds.), Lectures on Concurrency and Petri Nets. Lecture Notes in Computer
Science 3098, pp. 87–124. Springer, 2003.

[Dil90] D. L. Dill. Timing Assumptions and Verification of Finite-State Concurrent Sys-
tems. In Automatic Verification Methods for Finite State Systems. Lecture Notes in
Computer Science 407, pp. 197–212. Springer-Verlag, London, UK, 1990.

[GB03] H. Giese, S. Burmester. Real-Time Statechart Semantics. Technical report tr-ri-03-
239, Software Engineering Group, University of Paderborn, Germany, June 2003.

11 / 12 Volume X (2010)

52

Reachability Analysis on Timed Graph Transformation Systems

[GS04] H. Giese, D. Schilling. Towards the Automatic Verification of Inductive Invariants
for Infinite State UML Models. Technical report tr-ri-04-252, Software Engineering
Group, University of Paderborn, Germany, December 2004.

[HHH10] C. Heinzemann, S. Henkler, M. Hirsch. Refinement Checking of Self-Adaptive Em-
bedded Component Architectures. Technical report tr-ri-10-313, Software Engineer-
ing Group, University of Paderborn, Mar. 2010.

[HHPS10] S. Henkler, M. Hirsch, C. Priesterjahn, W. Schäfer. Modeling and Verifying Dy-
namic Communication Structures based on Graph Transformations. In Proc. of the
Software Engineering 2010 Conference, Paderborn, Germany. 2010.

[HHZ09] C. Heinzemann, S. Henkler, A. Zündorf. Specification and Refinement Checking of
Dynamic Systems. In Gorp (ed.), Proceedings of the 7th International Fujaba Days.
Pp. 6–10. Eindhoven University of Technology, The Netherlands, November 2009.

[HSJZ10] C. Heinzemann, J. Suck, R. Jubeh, A. Zündorf. Topology Analysis of Car Platoons
Merge with FujabaRT & TimedStoryCharts - a Case Study. In Gorp et al. (eds.),
Transformation Tool Contest. Malaga, 2010.

[KG07] F. Klein, H. Giese. Joint Structural and Temporal Property Specification Using
Timed Story Scenario Diagrams. In Formal Approaches to Software Engineering.
Lecture Notes in Computer Science 4422, pp. 185–199. Springer, 2007.

[KK08] B. König, V. Kozioura. Towards the Verification of Attributed Graph Transformation
Systems. In ICGT ’08: Proc. of the 4th international conference on Graph Trans-
formations. Pp. 305–320. Springer-Verlag, Berlin, Heidelberg, 2008.

[LV10] J. de Lara, H. Vangheluwe. Automating the transformation-based analysis of visual
languages. In Formal Aspects of Computing. Volume 22(3), pp. 297–326. Springer,
2010.

[ÖM07] P. C. Ölveczky, J. Meseguer. Semantics and Pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2):161–196, 2007.

[RDV09] J. E. Rivera, F. Duran, A. Vallecillo. A graphical approach for modeling time-
dependent behavior of DSLs. Visual Languages - Human Centric Computing 0:51–
55, 2009.

[Ren08] A. Rensink. Explicit State Model Checking for Graph Grammars. In Concur-
rency, Graphs and Models. Lecture Notes in Computer Science 5065, pp. 114–132.
Springer, 2008.

[THRB10] P. Torrini, R. Heckel, I. Ráth, G. Bergmann. Stochastic Graph Transformation with
Regions. In GM-VMT’10. Electronic Communications of the EASST 29. 2010.

[Zün01] A. Zündorf. Rigorous Object Oriented Software Development. University of Pader-
born, 2001.

Proc. GraBaTs 2010 12 / 12

53

Electronic Communications of the EASST
Volume X (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Neighbourhood Abstraction in GROOVE — Tool Paper

Arend Rensink and Eduardo Zambon

6 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

54

http://www.easst.org/eceasst/

ECEASST

Neighbourhood Abstraction in GROOVE — Tool Paper

Arend Rensink and Eduardo Zambon∗

rensink@cs.utwente.nl, zambon@cs.utwente.nl
Formal Methods and Tools Group
Department of Computer Science

University of Twente, The Netherlands

Abstract: In this paper we discuss the implementation of neighbourhood graph ab-
straction in the GROOVE tool set. Important classes of graph grammars may have un-
bounded state spaces and therefore cannot be verified with traditional model check-
ing techniques. One way to address this problem is to perform graph abstraction,
which allows us to generate a finite abstract state space that over-approximates the
original one. In previous work we presented the theory of neighbourhood abstrac-
tion. In this paper, we present the implementation of this theory in GROOVE and
illustrate its applicability with a case study that models a single-linked list.

Keywords: Graph Abstraction, Graph Transformation, Model Checking, GROOVE

1 Introduction

Many verification methods rely on the exploration of the state space of systems. However, even
for small systems the state space size tends to blow up exponentially. Moreover, one would like
to be able to analyse systems independently of their instantiated size. An approach that can in
principle solve both these problems is state abstraction. The idea behind this is that “similar”
states are actually grouped together, and such a group of similar states is modelled in such a
way the distinction between them is no longer visible. The behaviour of the abstract state is the
collection of possible behaviours of the original states.

This principle has been long known and studied, e.g., in abstract interpretation [CC77] and
shape analysis [SRW98, SRW02]. In the context of graph transformation we have seen several
theoretical studies on suitable abstractions [Ren04, RD06, BBKR08, RN08, BKK03, KK06].
However, to the best of our knowledge only the last of these is backed up by an implementation,
namely AUGUR2 [KK08].

In this paper we report an extension of GROOVE that implements the neighbourhood abstrac-
tion principle of [BBKR08], showing its feasibility at least on a small example. This gives us a
basis for experimenting with different, more expressive notions of abstraction.

2 Neighbourhood Abstraction

Our notion of abstraction is based on neighbourhood similarity: two nodes are considered in-
distinguishable if they have the same incoming and outgoing edges, and the opposite ends of

∗ The work reported herein is being carried out as part of the GRAIL project, funded by NWO (Grant 612.000.632).

1 / 6 Volume X (2010)

55

mailto:rensink@cs.utwente.nl
mailto:zambon@cs.utwente.nl

Neighbourhood Abstraction in GROOVE — Tool Paper

those edges are also comparable (in a parameterisable sense). Graphs are abstracted by folding
all indistinguishable nodes into one, while keeping count of their original number up to some
bound of precision. The incident edges are also combined. Counting up to some bound is done
using multiplicities. We use Mk = {0, . . . ,k,ω} with k ∈ N consisting of exact numbers up to k
(which is typically a low value such as 1 or 2) and the value ω standing for “many”.

Formally, a graph is a tuple G = 〈V,E〉 of nodes and edges, where (in our case) the edges are
triples (v,a,w) of source node, label, and target node. The abstractions are called shapes: they
are 5-tuples S = 〈G,∼,multnode,multin,multout〉 in which

• G is the underlying graph structure of the shape;

• ∼ ⊆V ×V is a neighbourhood similarity relation;

• multnode : V→Mν is a node multiplicity function, which records how many concrete nodes
were folded into a given abstract node, up to bound ν ;

• multin,multout : (V ×L×V/∼)→Mµ are incoming and outgoing edge multiplicity func-
tions, which record how many edges with a certain label the concrete nodes had that were
folded into an abstract node, up to a bound µ and a group of ∼-similar opposite nodes.

The following is pseudo-code for generating the abstract state space. Q is the set of all shapes
and F the set of fresh, yet to be explored shapes; P is the set of rules and G the start graph.

1 let S := abstracti(G), Q := /0, F := {S}
2 while F 6= /0
3 do choose S ∈ F (which S is selected depends on the exploration strategy)
4 let F := F \{S}
5 for p ∈ P, m ∈ prematch(p,S), S′ ∈materialise(m,S)
6 do let R := normalise(apply(p,m,S′))
7 if R /∈ Q
8 then let Q := Q∪{R}, F := F ∪{R}
9 fi

10 od
11 od

The important phases in this algorithm are:

• abstract computes the shape of a graph. This is controlled by a parameter i expressing the
radius of the neighbourhood to be considered in the neighbourhood similarity relation ∼,
which is built iteratively. Level 0 considers only node labels, and additional levels look at
outgoing and incoming edges, bounded by i;
• prematch computes morphisms of a rule p into a shape S. Such a morphism is not yet a

match, because the images of p’s left hand side may be nodes with multiplicity > 1; in
that case they have to be materialised.
• materialise creates concrete nodes and edges for the image of p in S. This is a non-

deterministic step, as there may be choices involved in choosing multiplicities for the
instantiated nodes and edges.
• apply is rule application, which can be carried out as usual because the rule now acts upon

a concrete subgraph of S′.

Proc. GraBaTs 2010 2 / 6

56

ECEASST

• normalise merges the transformed graph back into the rest of the shape; it is thus similar
to abstract except that it acts upon a (partially materialised) shape rather than a graph.

For instance, abstracti converts the following graph into a shape, using i = 1 and ν = µ = 1. The
indicated C-nodes in the graph are folded because they are indistinguishable by their incoming
and outgoing edges.

C CCCL C nh n

t

nn

︷ ︸︸ ︷
=⇒

C C CL n n

n

t

h

In the right hand side figure, all C-labelled nodes are ∼-similar, and all edge multiplicities are 1.
The “joined” incoming and outgoing edges indicate that the multiplicities apply to a bundle of
edges, rather than a single edge. The fat C-node has multiplicity ω .

The main challenge of implementing the pseudo-code given above lies in the complexity of
the algorithms for each five phases, in particular of materialise, which requires the enumeration
of all concrete nodes and edges configurations for the pre-match of a rule. An implementation
has to properly address these efficiency issues in order to be usable in practice.

Due to space limitations we refrain from giving additional information on the theory of neigh-
bourhood abstraction. For the details, we refer the interested reader to [BBKR08].

3 Case study

As a test case for our abstraction implementation we use a graph transformation system that
models a single-linked list. The list is formed by cells, representing the elements in the list,
which are connected by a next pointer. Additionally, a list has a root object that indicates the first
and last elements of the list, by way of pointers called head and tail, respectively. The modelling
of such structure as a graph in GROOVE is trivial, as shown in the previous section. The root of
the list is represented by a L-node and the cells by C-nodes. Pointers head, tail, and next are
modelled by edges labelled h, t, and n, respectively.

We consider two list operations: one that puts a new element to the tail of the list, and another
that gets the head element from the list. These operations are modelled in our graph transfor-
mation system by two rules, shown below. GROOVE combines the left and right hand side of a
rule in a single graph, and colours and shapes are used to distinguish different elements. Blue
(dashed thin) elements are deleted by the rule application; green (continuous fat) nodes and edges
are created; and black (continuous thin) elements are preserved. For simplicity, we assume that
our lists always have at least one element1.

L C C

t

t n L C C

h

nh

put rule get rule

1 otherwise, two more rules are necessary to insert an element to an empty list and to remove the last element.

3 / 6 Volume X (2010)

57

Neighbourhood Abstraction in GROOVE — Tool Paper

It is clear that the concrete state space of this example is unbounded: the put rule is always
enabled, and successive applications of this rule keep producing longer and longer lists. How-
ever, the abstract state space produced by our abstraction mechanism is finite. For an abstraction
radius of one, the state space has 10 states and 21 transitions, as shown in Fig. 1. Each dashed
box represents a state, with its numbering on the lower left corner, and the corresponding shape
drawn with solid lines. The transitions between states are shown by dashed arrows, labelled with
the rule applied.

There are many interesting points to note in the state space of Fig. 1. First, as long as node
and edge multiplicities stay within their bounds, the abstract graph transformation corresponds
to the concrete one. This is seen on states s0, s1, and s2, where the shapes are concrete.

Second, an abstract state may represent an unbounded number of concrete ones. State s3, for
example, is an abstract representative for lists with four or more elements. This is illustrated by
the put transition from s3 to itself.

Third, the non-determinism of the materialisation algorithm can be seen on the two get transi-
tions from state s3. Although there is only one pre-matching of the rule, when materialising this
pre-match two distinct shapes are produced.

Fourth, we can see that the abstract state space has spurious configurations. For example, states
s6 to s9 represent lists with unconnected elements, which do not occurr in the concrete state
space. This spurious shapes arise from the fact that the neighbourhood abstraction mechanism
does not keep information regarding connectivity.

4 Conclusion

The results reported above are the very first steps toward the capability for GROOVE to incorpo-
rate abstraction. We look upon this as a key factor in the eventual success of the tool. Though
currently we have merely implemented the theory described in [BBKR08], we know from expe-
rience that having the ability to actually experiment with smaller and larger cases provides a lot
of additional motivation and can be a source of new ideas and developments.

For instance, only a working implementation makes it possible to obtain figures about actual
abstract state space sizes, which is one of the most important factors in the feasibility of any
abstraction-based methods. Some very first figures about the effect of increasing node multiplic-
ity bounds ν and radii i for our linked list example are collected in the following table. Clearly,
the radius has a much greater effect on the state space size than the node multiplicity. All results
took less than 60 seconds to be generated.

ν = 1 ν = 2 ν = 3
states trans. states trans. states trans.

i = 1 10 21 14 29 18 37
i = 2 389 1060 613 1486 969 2318

As noted in [BBKR08], neighbourhood abstraction is adequate for cases where updates are
determined locally and reachability is not important. Since one of our goals is to use graph
abstraction for the verification of software with dynamically allocated data structures, we are
working on improving the current theory and implementation in order to trim down the spurious

Proc. GraBaTs 2010 4 / 6

58

ECEASST

s0 CL t
h

s1

C CL nh

t

s2

C C CL n n

t

h

s3

C C CL n n

n

t

h

s4 C

C CL
n

h

t

n

n n

s5 C

C CL
n

h

t

n

n n

s6 C CL
n

t
h

s7 C CL
n

t
h

s8

C C CL n

n

h

ts9

C C CL n

n

h

t

putget

putget

put

put

getget
put

get

get

put

getget

get

putput

put

get

put

get

Figure 1: The abstract state space for the parameters i = 1 and ν = µ = 1

5 / 6 Volume X (2010)

59

Neighbourhood Abstraction in GROOVE — Tool Paper

configurations in the state space. We expect this to reduce the size of the state spaces consider-
ably, which will allow GROOVE to be used on more complex and realistic examples.

Bibliography
[BBKR08] J. Bauer, I. B. Boneva, M. E. Kurban, A. Rensink. A Modal-Logic Based Graph Abstraction.

Pp. 321–335 in [EHRT08].

[BKK03] P. Baldan, B. König, B. König. A Logic for Analyzing Abstractions of Graph Transforma-
tion Systems. In Cousot (ed.), Static Analysis Symposium (SAS). LNCS 2694, pp. 255–272.
Springer, 2003.

[CC77] P. Cousot, R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In POPL. Pp. 238–252. 1977.

[EHRT08] H. Ehrig, R. Heckel, G. Rozenberg, G. Taentzer (eds.). International Conference on Graph
Transformations (ICGT). LNCS 5214. Springer, 2008.

[KK06] B. König, V. Kozioura. Counterexample-Guided Abstraction Refinement for the Analysis
of Graph Transformation Systems. In Hermanns and Palsberg (eds.), Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). LNCS 3920, pp. 197–211. Springer,
2006.

[KK08] B. König, V. Kozioura. AUGUR2— A New Version of a Tool for the Analysis of Graph Trans-
formation Systems. ENTCS 211:201–210, 2008.

[RD06] A. Rensink, D. S. Distefano. Abstract Graph Transformation. In Mukhopadhyay et al. (eds.),
Software Verification and Validation. ENTCS 157, pp. 39–59. May 2006.

[Ren04] A. Rensink. Canonical Graph Shapes. In Schmidt (ed.), Programming Languages and Sys-
tems (ESOP). LNCS 2986, pp. 401–415. Springer, 2004.

[RN08] S. Rieger, T. Noll. Abstracting Complex Data Structures by Hyperedge Replacement. Pp. 69–
83 in [EHRT08].

[SRW98] S. Sagiv, T. W. Reps, R. Wilhelm. Solving Shape-Analysis Problems in Languages with De-
structive Updating. ACM ToPLaS 20(1):1–50, 1998.

[SRW02] S. Sagiv, T. W. Reps, R. Wilhelm. Parametric shape analysis via 3-valued logic. ACM ToPLaS
24(3):217–298, 2002.

Proc. GraBaTs 2010 6 / 6

60

Electronic Communications of the EASST
Volume X (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Sketch-based Diagram Editors with User Assistance based on Graph
Transformation and Graph Drawing Techniques

Steffen Mazanek, Christian Rutetzki, and Mark Minas

13 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

61

http://www.easst.org/eceasst/

ECEASST

Sketch-based Diagram Editors with User Assistance based on
Graph Transformation and Graph Drawing Techniques

Steffen Mazanek, Christian Rutetzki, and Mark Minas

(Steffen.Mazanek, Christian.Rutetzki, Mark.Minas)@unibw.de
Universität der Bundeswehr München, Germany

Abstract: In the last years, tools have emerged that recognize sketched diagrams
of a particular visual language. That way, the user can draw diagrams with a pen
in a natural way and still has available most processing capabilities. But also in
the domain of conventional diagram editors, considerable improvements have been
achieved. Among other features, powerful user assistance like auto-completion has
been developed, which guides the user in the construction of correct diagrams. The
combination of these two developments, sketching and guidance, is the main contri-
bution of this paper. It not only shows feasibility and usefulness of the integration of
user assistance into sketching editors, but also that novel user strategies for identi-
fying and dealing with recognition errors are made possible that way. The proposed
approach heavily exploits graph transformation and drawing techniques. It was in-
tegrated into a meta-tool, which has been used to generate an editor for business
process models that comprises the features described in this paper.

Keywords: sketching, meta-tools, user assistance, graph transformation, graph draw-
ing, process models

1 Introduction

An important benefit of sketch-based diagram editors is that diagrams can be drawn with maxi-
mal freedom in a very natural way. With the appearance of powerful and permissive approaches
to their subsequent recognition – among others [13, 7, 8] – many advantages of traditional WIMP
interfaces (Window, Icon, Menu, Pointer) can be carried over. Most importantly, diagrams, once
recognized, can be further processed. However, one feature of state-of-the-art conventional di-
agram editors, namely user assistance, has not yet been integrated into sketch tools. The user
assistance we aim at guides the user in the construction of correct diagrams. Indeed, the only
existing attempt in this direction we are aware of is the work on symbol completion by Costagli-
ola et al. [9]. This approach helps the user in completing individual symbols (lexical level), but
the overall diagram structure (syntactical level) is not at all considered – not even to mention
language semantics or pragmatics. Moreover, this approach has not been integrated into a visual
environment yet. In this paper we fill this gap by integrating a user assistance component into
a sketching meta-tool, i.e., a framework for generating sketch editors from a language specifi-
cation. We report on the challenges that had to be addressed and how graph transformation and
graph drawing techniques have been used for solving them.

Fig. 1 shows a bird’s eye view of the proposed approach, i.e., the overall architecture of
sketching editors with assistance. The user, who is represented by the stickman in the mid-

1 / 13 Volume X (2010)

mailto:(Steffen.Mazanek, Christian.Rutetzki, Mark.Minas)@unibw.de

Sketch-based Diagram Editors with User Assistance

dle, draws strokes, which are the basic input of most sketch recognition tools. The recognizer
transforms these strokes either on-line or on user’s request into a set of diagram components.
Next, a language-specific analysis of the diagram is performed, e.g., a syntax check. For the
diagram given in Fig. 1, it might be checked that there are no arrows without proper source and
target components or that processing components (rectangles) are connected to data structures
(ellipses) only. The result of this analysis step is passed back to the user as visual feedback.

The novel aspects of this work are surrounded

Figure 1: Proposed editor architecture

by a dashed line. Concretely, we propose that
the analysis step might also result in a set of sug-
gestions for the user, e.g., on how the diagram
can be completed. The user can choose among
these suggestions, e.g., by using a preview of the
corresponding diagram changes. The selected
suggestion then has to be integrated into the sketch.
Therefore, a translator component generates a
set of new strokes and adds them to the user’s
sketch. That way, the next analysis cycle will
directly consider the selected suggestion.

This paper covers the following assistance fea-
tures, which are all based on syntax [16]:

• auto-completion: the computation of missing diagram components that transform the in-
complete diagram into a proper member of the underlying visual language,

• auto-link: the derivation of missing edges in graph-like languages according to node ar-
rangement and other kinds of editing accelerators,

• example generation: the generation of correct example diagrams that can be explored by
the user for the sake of language learning.

Suggestions that remove parts of a sketch are not considered.
Sketch tools with powerful recognizers [13, 7, 8] as well as tools for the computation or spec-

ification of suggestions [1, 15, 19] already exist. Therefore, this paper focuses on the following
three aspects:

• User interaction: how can the user invoke and control assistance,

• Stroke generation: how and where should the translator generate strokes from the sugges-
tion (this actually is a graph drawing problem),

• User feedback: indeed, syntactical assistance not only provides clues for syntactical prob-
lems, but also simplifies the identification of recognition errors.

This paper is structured as follows: Sect. 2 introduces the running example language, namely
business process models (BPMs). Our implementation relies on existing frameworks for sketch
recognition and user assistance; Sect. 3 recapitulates their concepts. How these two approaches
actually have been combined and integrated is described in Sect. 4. A discussion is provided in
Sect. 5. Finally, related work is reviewed and the paper is concluded (Sect. 6 and 7).

Proc. GraBaTs 2010 2 / 13

ECEASST

2 Business Process Models

BPMs are used to represent the workflows within an enterprise and, thus, are a highly relevant di-
agrammatic language today. In recent years a standardized visual notation, the Business Process
Modeling Notation BPMN [18], has been developed. Since BPMs are frequently developed in
creative team meetings, this language ideally should be supported by sketch editors. Fig. 2 shows
a small sales process, which has been drawn and recognized by the sketching editor described in
this paper. The magnified (assistance) toolbar will be described later.

BPMs basically are graphs, where the connecting arrows represent sequence flow. The ex-
ample process starts with the receipt of an order, which is expressed by a start event (circle).
Thereafter, the sequence flow is split by an exclusive gateway (diamond shape). If the ordered
product is available, it is prepared and shipped, which is expressed by activities (rectangles).
Otherwise, a notification is sent to the customer. Thereafter, the sequence flow is joined again by
another gateway, and the process terminates as indicated by the end event (circle).

In the following, only well-structured BPMs are treated, i.e., we require splits and joins to
be properly nested. This restriction improves the understandability of process models in the
same way as structured programming improves the understandability of program code. For well-
structured BPMs, moreover, powerful syntactical user assistance is available [16].

3 The Frameworks PerSUADE and DSketch

The general approach proposed in this paper (Fig. 1) is generic as it is not restricted to a particular
visual language. Hence, it requires frameworks for sketch recognition as well as syntax analysis
and user assistance that are generic as well, i.e., they must be adaptable to different visual lan-
guages. Concretely, we have chosen the DiaGen approach [17] as a base, where hypergraphs are
used as a model for diagrams and hypergraph grammars as a means for syntax definition. Accord-
ingly, this formalism is introduced at first. Thereafter, the PerSUADE approach, an extension of
DiaGen by syntax-based user assistance, is introduced. Finally, the sketching approach DSketch,
which is also based on DiaGen, is recapitulated.

3.1 Hypergraphs and Hypergraph Grammars

Hypergraphs are generalized graphs whose edges can connect an arbitrary number of nodes.
This notion of graphs allows a uniform representation of all kinds of diagrams. The key idea
is that diagram components are represented by hyperedges and their attachment areas by nodes.
Fig. 2 also shows the chosen hypergraph representation of the example BPM. The hyperedges
are drawn as rectangular boxes and the nodes as black dots. If a hyperedge and a node are
incident, they are connected by a line called tentacle. Activities and events have two attachment
areas, i.e., incident nodes: one for incoming and one for outgoing sequence flow. Gateways
have four attachment areas (namely their corners). Note that sequence arrows do not explicitly
occur in this hypergraph representation. They are rather represented implicitly by the fact that
connected components visit the same node: the source component via its outgoing tentacle, the
target component via its incoming tentacle, respectively. The hypergraph shown in Fig. 2 actually
is the result of a lexical analysis step, which performs such simplifications.

3 / 13 Volume X (2010)

Sketch-based Diagram Editors with User Assistance

event event

activity

gate-

way

gate-

way

activity activity

Process ::= event Flow event

Flow FlowFlElem::=
n1 n2 n1 n2

FlElem
n1 n2

FlElem
n1 n2

activity
n1 n2

gateway
n1

gateway
n2

Flow

Flow

::=

P1:

P2|3:

P4|5:

Process event Flow event

gateway gateway

Flow

Flow

P1

P3

 event FlElem event
P5

event event

2*(P3,P4)

 gateway gateway

activity

activity

event event

Figure 2: A sketched BPM fragment and its hypergraph representation

Process ::= event Flow event Flow Flow FlElem ::=
n1 n2 n1 n2

FlElem
n1 n2

FlElem
n1 n2

activity
n1 n2

gateway
n1

gateway
n2

Flow

Flow

::=

P1: P2|3:

P4|5:

Figure 3: Hypergraph grammar for BPMs

In DiaGen, hypergraph grammars are used for language definition. For this paper, only
context-free ones are considered [11]. Such hypergraph grammars consist of two finite sets of
terminal and nonterminal hyperedge labels and a starting hypergraph that contains only a single
nonterminal hyperedge. Syntax is described by a set of productions. The hypergraph language
generated by a grammar is defined by the set of terminally labeled hypergraphs that can be de-
rived from the starting hypergraph. Fig. 3 shows the productions of a hypergraph grammar GBPM
for very simple process models. A more comprehensive version that includes pools (process
containers), different kinds of intermediate events, and embedded messages has been shown in
[16]. The types event, activity, and gateway are the terminal hyperedge labels. The set of non-
terminal labels consists of Process, Flow, and FlElem. The starting hypergraph consists of just
a single Process edge. The application of a context-free production removes an occurrence e
of the hyperedge on the left-hand side of the production from the host graph and replaces it by
the hypergraph Hr on the right-hand side. Matching node labels of both sides of a production
determine how Hr has to fit in after removing e.

3.2 User Assistance with PerSUADE

For visual languages defined by hypergraph grammars, hypergraph patches have been proposed
as a means for the realization of Syntax-based User Assistance in Diagram Editors (PerSUADE)
[15]. A patch basically describes a modification of a given hypergraph H that transforms H into
a valid member of the language defined by a given grammar G. Two different kinds of atomic
modifications are considered: merging nodes and adding edges. The application of a patch for
a hypergraph H then corresponds to the construction of a so-called quotient hypergraph H/∼
whose nodes are equivalence classes of the original nodes of H. Correcting patches indeed can
be computed while parsing hypergraphs [15]. Consider the hypergraph H given in Fig. 4 as an

Proc. GraBaTs 2010 4 / 13

ECEASST

H:

merge nodes add edges

n4 n1
activity event event

n2 n3 n5

n3~n4 n1
activity event event

n2 n5 n3
activity

n1
activity event

n2 n4
event

n5

Figure 4: Hypergraph patches by example

example. Hypergraph H does not belong to the language of GBPM, but it can be corrected by
merging the nodes n3 and n4. It can also be corrected by inserting an activity hyperedge at the
proper position. Note that there usually is an infinite number of correcting patches. Actually,
according to GBPM, an arbitrary number of activities could be inserted between the activity and
the event hyperedge at the right. So, the size of desired patches, i.e., the number of additional hy-
peredges, must be restricted by the user. A special case of patches is the empty input hypergraph.
Its patches can be used for exhaustive example generation.

Assistance based on hypergraph patches has been integrated into DiaGen editors as follows:
The editor automatically maintains the hypergraph representation of the diagram. On user’s re-
quest, the patch-computing parser is applied to this hypergraph representation with the desired
size of patches as a parameter. It computes all possible correcting hypergraph patches of this
size. From those, the user has to choose via a preview functionality. The selected patch is trans-
lated to diagram modifications by a language-specific update translator. Finally, the diagram is
beautified by a layout component. That way, powerful syntax-based user assistance for BPMs
has been realized already [16] – however, only in the context of a conventional WIMP editor. A
screencast is available at www.unibw.de/inf2/DiaGen/assistance/bpm.

For the computation of patches, PerSUADE can only consider the context-free part of a hy-
pergraph [16]. This limitation naturally also applies to the sketch editors with guidance to be
discussed in Section 4.

3.3 Diagram Recognition à la DSketch

DSketch is an extension of DiaGen that complements the conventional WIMP-based GUI of di-
agram editors by a drawing canvas, which readily accepts all kinds of user strokes freely entered
with a stylus. The integrated recognizer allows diagrams to be analyzed and further processed
[6]. The main characteristics of this approach are: (i) Little restrictions to drawing components,
e.g., a rectangle can be drawn clockwise, counterclockwise, or even interleaved with other com-
ponents. (ii) Syntactic and semantic information is used to resolve ambiguities that occur in the
recognition process. For instance, if a sloppily drawn BPM component could be both an activity
or an event, the actual decision is postponed to the analysis stage where the interpretation of the
respective strokes might get clear from the context. And finally (iii), the approach is generic, i.e.,
editors for a wide range of languages can be specified.

Fig. 5 shows the overall architecture of this sketching approach. The first processing step
is the recognizer, which analyzes the sketch’s strokes and creates a corresponding set of dia-
gram components. Actually, several primitive recognizers (called transformers in [5]) for lines,

5 / 13 Volume X (2010)

www.unibw.de/inf2/DiaGen/assistance/bpm

Sketch-based Diagram Editors with User Assistance

Editor
Specification

Solution – Architecture

Hypergraph
modelModeler

Reduced
hypergraph

model
ReducerDiagram

Components

Drawing
tool

Editor user

uses

Semant.
represen-

tation

Attribute
evaluation

Parser Derivation
structure

Strokes

Recognizer

highlights correct diagramgenerates

event activity

sequence
activityevent

event

sequence

atatat
activityevent

sequence

at
event

sequence

event
Process

event event
Steps

ship
order

BPEL:

<invoke name="ship order"/>

Figure 5: Architecture of DSketch [6]

arcs, circles, etc. search for corresponding primitives in the sketch. The main recognizer queries
these primitive recognizers and – directed by the language specification – assembles the diagram
components from those primitives. Generally, the recognition is very tolerant to avoid false neg-
atives. The inevitably resulting false positives are resolved not until parsing. The actual analysis
of the diagram now works in several steps similar to the analysis in conventional DiaGen editors:
First, a hypergraph model is created from all components. Then the reducer is applied (lexical
analysis) and yields the reduced hypergraph model as shown in Fig. 2. The parser syntactically
analyzes this hypergraph and builds up a derivation structure that is similar to a derivation tree,
but that also reflects non-context-free aspects of the diagram. The parser ensures that no two
possible interpretations of the same stroke are integrated into the same derivation structure. That
way, ambiguities are effectively resolved. Each derivation structure then represents a correct
diagram and is rated according to its quality. Finally, a semantic representation of the best-rated
derivation is computed via attribute evaluation. If this is not possible, the next best derivation is
tried and so on. Details about this process can be found in [4].

The DSketch approach is efficient and fully functional, but it cannot recognize dashed lines nor
distinguish different line widths. BPM messages, which are usually drawn as dashed lines, and
BPM end events, which are drawn as fat circles, thus, must be represented with another notation.
Moreover, text recognition is not integrated into DSketch. Textual labels, hence, must be entered
via keyboard or an extra text recognizer.

4 Integration of User Assistance into DSketch

In this section we describe how the assistance provided by PerSUADE has been integrated into
DSketch. The overall architecture of the editors generated by the realized system is shown in
Fig. 6, which basically refines Fig. 1. The right-hand side of Fig. 6 comprises the analysis steps

Proc. GraBaTs 2010 6 / 13

ECEASST

AnalysisAssistance

Strokes /
Text Recognizer

Modeler

Reducer

Conv. parser

Components

Hypergraph
patches

Update
Translator

Layout

Stroke
Generator

Reduced
hypergraph

model

Components
with positions

Hypergraph
model

Feedback

gets preview

accepts

chooses

creates

receives

PerSUADE

Hypergraph
model

Figure 6: Novel architecture of sketch editors

of DSketch. The analysis performed by the PerSUADE parser belongs to this side, too. The
left-hand side comprises the novel part of the system where the results of PerSUADE are further
processed for the sake of assistance.

The processing steps up to the parser remain almost unchanged. Just the recognizer needed
to be slightly adapted. Recall that in DSketch the recognizer is very error-tolerant. So, often the
same stroke is accepted by several different primitive recognizers. This results in double findings
that are resolved in DSketch during syntax analysis. The PerSUADE framework cannot deal with
such ambiguities yet. Therefore, we have enforced the recognizer to make the decision if one of
the assistance functions is invoked. Basically, the recognizer now selects the interpretation with
the highest rating from the double findings. This rating depends on how precisely a primitive is
drawn, how close the connections at the junctions are, and how particular constraints are met.

The next adapted component is the parser, i.e., the process of syntactically analyzing the dia-
gram. Actually, the DSketch parser has remained unchanged, but an additional parser component
from the PerSUADE framework now complements it. All kinds of assistance are supported by
this parser instead of the normal DSketch parser. On user’s request, this parser computes hyper-
graph patches for (the recognized parts of) the diagram’s reduced hypergraph model. The user
can explore these patches and choose one of them using a preview functionality.

Let us assume that the user has selected one of the patches. Consider the example traced in
Appendix A. There, the smallest existing patch just merges the outgoing node of the activity
and the incoming node of the right-most event. The update translator translates this patch into
changes of the hypergraph model. For our example, an arrow needs to be introduced that is
attached to the activity and the event (indicated by the spatial relationship edges “at”). Thereafter,
it is up to the layouter to find an appropriate position for the newly introduced components. For
the example of Appendix A, this is an easy task because the source and target components of
the sequence arrow already exist. The more complex completion examples given in Fig. 7 and
the generated example diagrams given in Fig. 8, however, show that this step is not always that

7 / 13 Volume X (2010)

Sketch-based Diagram Editors with User Assistance

Figure 7: Auto-completion examples. Suggested completions are drawn in red.

Figure 8: Example generation

simple. The used layout approach and the actual user interface are discussed in the following
subsections. The last processing step, i.e., the stroke generator, is rather simple. It just draws
perfect components with the optimal sample rate, thus maximizing the recognition rate.

4.1 Placement of New Components by the Use of Graph Drawing Techniques

A basic assumption of our implementation is that user strokes remain unchanged (in contrast
to conventional PerSUADE editors, where the existing components can be adapted during as-
sistance). That way, surprises are prevented and the special flavor of sketching is preserved.
So, we need a flexible layout engine for graph-like languages (other languages would require
some adaptations) that only integrates the new components and leaves the remaining diagram
unchanged. These requirements can be satisfied by layout algorithms based on physical analo-
gies [3]. Concretely, we have adapted a spring embedder, which interprets edges as springs
with their particular attraction forces. Furthermore, special repulsive forces take effect between
the node components. During layout, the node components move in increments according to
the respective sum of forces until an equilibrium state has been reached. However, in our con-
text not all nodes can be moved around freely, but only the new ones introduced by the update
translator. The existing nodes, in contrast, are locked into their positions. An important benefit
of spring embedders besides their simplicity is that they can also be used for static layout in a
straightforward way. Static layout is required here, e.g., for example generation (cf. Fig. 8).

There are two problems with spring embedders in our context: The top diagram of Fig. 7
would look much better if the new activity were positioned further to the top. However, spring
forces pull the new activity to the presented position, i.e., springs prevent bent arcs that way.
This behavior can only be avoided by introducing invisible components in a context-sensitive
way.Another problem is that new components, if positioned randomly at the beginning, cannot

Proc. GraBaTs 2010 8 / 13

ECEASST

“pass” existing components due to the repulsive forces. This may result in strange layouts.
We have prevented this problem by introducing an additional processing step that guesses more
appropriate initial coordinates for new node components to be refined afterwards.

Other layout algorithms might yield more common looking process models; actually, most
professional business modeling tools apply Sugiyama-style layout algorithms. However, such
algorithms are less suited in the context of this paper where the (usually user-chosen) position of
existing nodes must be preserved when new nodes or edges have been introduced.

4.2 User Interface

The actual user interface is quite simple and easy to use — the complete editor window is shown
in Fig. 2. There is a button for starting the computation of patches (see the magnified part of
Fig. 2). After pressing this button, the first solution is shown immediately. Arrow buttons can
be used for browsing through other solutions. In particular the generation of examples usually
results in a large number of solutions. A check button has to be pressed in order to accept the
currently previewed solution. Strokes are then generated from the previewed diagram compo-
nents. The resulting diagram looks like the preview, but the new components are not highlighted
anymore, but drawn as normal, although perfect, strokes. Note that the user does not need to
accept the previewed solution, but can use it as a kind of draft and draw the same components
with his own strokes. That way, he will get a diagram that looks more homogeneous than the one
with the generated perfect strokes. To continue with the UI, the preview also can be canceled, of
course. Finally, the patch size can be set via plus and minus buttons. This parameter basically
indicates how many new diagram components (or more precisely, terminal hyperedges) are to be
introduced. In the figure this parameter is set to its default value 1.

5 Discussion

Although an elaborate user study still remains to be done, the results so far are promising. As
before, the user can freely sketch diagrams. He is not restricted in any way in the creative process
of sketching. This actually is the reason why we have not realized a more pervasive assistance,
e.g., on-line after every single stroke. In many conventional sketch editors, the user is in trouble
if his sketch cannot be recognized. With the developed editor, he can ask for syntactical guidance
instead. But this is not the only help he can get as we describe next.

5.1 Location of Recognition Errors

An important benefit of our approach is that it helps identifying recognition errors (besides syn-
tax errors). Consider Fig. 9 as an example. A human can easily see that the sketched diagram is a
structured business process. Still the diagram is not correctly recognized by DSketch. Normally,
the user would have no clue what is wrong here. Has the start event mistakenly been recognized
as an activity? Or has the end event been drawn too sloppily? Invoking assistance yields the
answer. The red arrow between the activity and the end event clearly points out the problem:
either the existing arrow has not been correctly recognized, or the gap between its head and the
end event is too large. In either case, the user now can correct this problem without the need

9 / 13 Volume X (2010)

Sketch-based Diagram Editors with User Assistance

Figure 9: Identification of recognition errors

to redraw the whole diagram. It would even be possible to automatically mask or remove those
strokes that do not contribute to the solution.

This problem, however, mainly arises for quite restricted visual languages where either the
whole diagram is correct or nothing. Indeed, a single misrecognized arrow affects the correctness
of the whole BPM. It simply is not well-structured anymore as we have required by the grammar.
With a more relaxed syntax definition at least sub-diagrams would be recognized correctly so
that the visual feedback given by the DiaGen parser might indicate what is wrong. Actually,
languages, where either the whole diagram or nothing is recognized as correct, have been very
critical for sketching systems so far, because the recognition rate exponentially drops down with
the size of the diagram. This problem is solved with our approach (although it would be even
better to re-feed the analysis result in the recognizer, so that it can try harder at the weak points).

5.2 Limitations

A problem of integrating PerSUADE into a sketching system is that it may happen that a sketch
is not recognized as correct after a suggested patch has been accepted by the user. When using
PerSUADE in conventional WIMP editors, this cannot happen: diagrams resulting from the
application of assistance are always correct. In the context of sketching, newly generated strokes
may interfere with existing strokes that, e.g., had been ignored by stroke recognition before.

6 Related Work

Of course, there are also other sketch editors for BPMs such as [14]. Moreover, due to the
practical relevance of this language, various kinds of guidance have been developed for conven-
tional WIMP-based BPM environments (an example is [2]). However, to our best knowledge
this guidance has not been integrated into sketch editors yet.

As already noted in the introduction, the most closely related work is [9] by Costagliola et al.
Here, an LR parser as known from textual languages is used for syntax analysis with respect to
a so-called sketch grammar. Thereby, syntactic information is exploited to resolve ambiguities
similar to the DSketch approach [10]. The symbol table of the parser then can be exploited to
realize symbol completion in sketch editors (and so-called symbol prompting in conventional
diagram editors). The strong points of this approach are that it is generic, that direct feedback
is provided (the approach is actually incremental), that the user’s own drawing style is used for
completion (a stroke repository is filled by the different symbol recognizers to this end), and
that the recognition of complex symbols can generally be improved that way. But, like with

Proc. GraBaTs 2010 10 / 13

ECEASST

our approach, explicit user interaction is still required. In contrast to [9], our approach does not
stop at the lexical level, but also considers the overall diagram structure. Even other kinds of
assistance not necessarily based on syntax could be integrated.

Another meta-tool where it should be possible to combine assistance with sketching is the
Marama toolkit. For Marama, both a critic authoring tool [1] for the specification of user feed-
back and a sketching framework [12] are available. Here, however, critics would have to be
specified manually whereas we gain the feedback automatically from the parser. The strong
points of [12] are that only very little extra specification effort is needed for complementing a
normal diagram editor with a sketching editor and that the user can easily overrule the recognizer
when it makes a mistake.

7 Conclusion

In this paper we have shown that user assistance functionality can be successfully added to sketch
editors. The presented approach allows to generate sketching editors with user assistance from
a language specification based on the existing sketching editor generator DSketch and the user
assistance library PerSUADE. As a representative example, we have created a sketch editor for
business process models with assistance features such as auto-completion or example generation.

But we have noticed yet another benefit of this approach besides helping the user with the lan-
guage. The very same assistance features actually can be put to a good use in locating recognition
errors. Those often directly result in syntax errors, whose fixes then point the user precisely to
the recognition error. If a new component is suggested as a correction where already a compo-
nent exists, the user can conclude that the existing component had been drawn too sloppily and
needs to be redrawn.

The developed sketch editor for business process models is demonstrated in several screencasts
and can be downloaded from www.unibw.de/inf2/DiaGen/assistance/sketching.

Future Work

In the future we want to experiment with relaxations of the assumption that the existing user
strokes must not be changed. It is certainly imaginable that sketched components are moved
around or even resized similar to the assistance in conventional DiaGen editors [16]. In this
context it should also be possible to integrate existing component fragments into the newly in-
troduced components in order to reuse as many strokes of the user as possible.

It would be also important to integrate the suggestions into the diagram closely following
the user’s drawing style. Perfect components mixed with sloppily drawn components make the
diagram look inhomogeneous. Costagliola et al. have proposed a stroke repository to this end,
which is used already for their symbol completion [9]. Alternatively, the user strokes could be
beautified to close this gap.

Finally, DSketch and PerSUADE need to be more deeply intertwined. While DSketch origi-
nally postpones final decision of stroke recognition until syntax analysis in order to improve the
recognition rate and to make ambiguity resolution possible, we had to enforce early recognition
decisions in order to integrate PerSUADE into DSketch.

11 / 13 Volume X (2010)

www.unibw.de/inf2/DiaGen/assistance/sketching

Sketch-based Diagram Editors with User Assistance

Bibliography
[1] N. M. Ali, J. Hosking, J. Huh, and J. Grundy. Critic authoring templates for specifying domain-

specific visual language tool critics. In Proc. 2009 Australian Software Engineering Conference,
pp. 81–90. IEEE, 2009.

[2] M. Born, C. Brelage, I. Markovic, D. Pfeiffer, and I. Weber. Auto-completion for executable busi-
ness process models. In Business Process Management Workshops, LNBIP 17, pp. 510–515. 2009.

[3] U. Brandes. Drawing on physical analogies. In Drawing Graphs: Methods and Models, LNCS
2025, pp. 71–86. 2001.

[4] F. Brieler and M. Minas. Ambiguity resolution for sketched diagrams by syntax analysis based on
graph grammars. In Proc. GT-VMT’08, ECEASST, vol. 10. 2008.

[5] F. Brieler and M. Minas. A model-based recognition engine for sketched diagrams. In Proc.
VL/HCC Workshop on Sketch Tools for Diagramming, pp. 19–28, 2008.

[6] F. Brieler and M. Minas. Recognition and processing of hand-drawn diagrams using syntactic and
semantic analysis. In Proc. AVI’08, pp. 181–188. ACM, 2008.

[7] R. Chung, P. Mirica, and B. Plimmer. InkKit: A generic design tool for the tablet PC. In Proc. 6th
ACM SIGCHI NZ chapter’s Int. Conf. on CHI, pp. 29–30. ACM, 2005.

[8] G. Costagliola, V. Deufemia, and M. Risi. Sketch grammars: A formalism for describing and
recognizing diagrammatic sketch languages. In Proc. ICDAR’05, pp. 1226–1231. IEEE, 2005.

[9] G. Costagliola, V. Deufemia, and M. Risi. Using grammar-based recognizers for symbol completion
in diagrammatic sketches. In Proc. ICDAR’07, pp. 1078–1082. IEEE, 2007.

[10] G. Costagliola, V. Deufemia, and M. Risi. Using error recovery techniques to improve sketch
recognition accuracy. In Proc. 7th Int. Workshop on Graphics Recognition, LNCS 5046, pp. 157–
168. 2008.

[11] F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge replacement graph grammars. In Handbook
of Graph Grammars and Computing by Graph Transformation. Vol. I: Foundations, pp. 95–162.
World Scientific, 1997.

[12] J. Grundy and J. Hosking. Supporting generic sketching-based input of diagrams in a domain-
specific visual language meta-tool. In Proc. 29th ICSE, pp. 282–291. IEEE, 2007.

[13] T. Hammond and R. Davis. LADDER, a sketching language for user interface developers. Comput-
ers&Graphics, 29(4):518–532, 2005.

[14] N. Mangano and N. Sukaviriya. Liberating expression: A freehand approach to business process
modeling. In Proc. 12th IFIP TC 13 Int. Conf. on HCI, LNCS 5727, pp. 834–835. 2009.

[15] S. Mazanek, S. Maier, and M. Minas. Auto-completion for diagram editors based on graph gram-
mars. In Proc. VL/HCC’08, pp. 242–245. IEEE, 2008.

[16] S. Mazanek and M. Minas. Business process models as a showcase for syntax-based assistance in
diagram editors. In Proc. MoDELS’09, LNCS 5795, pp. 322–336. 2009.

[17] M. Minas. Concepts and realization of a diagram editor generator based on hypergraph transforma-
tion. Science of Computer Programming, 44(2):157–180, 2002.

[18] Object Management Group. Business Process Model and Notation (BPMN). http://www.omg.org/
docs/formal/09-01-03.pdf. 2009.

[19] S. Sen, B. Baudry, and H. Vangheluwe. Domain-specific model editors with model completion. In
Models in SE, LNCS 5002, pp. 259–270. 2008.

Proc. GraBaTs 2010 12 / 13

http://www.omg.org/docs/formal/09-01-03.pdf
http://www.omg.org/docs/formal/09-01-03.pdf

ECEASST

A Processing steps by example

Update Translator

Reducer

Modeler

Recognizer

atat
activityevent

sequence

event

activityevent event~

atat
activityevent

sequence

event
atat

sequence

event activitysequence event

ParserHypergraph
patch

Strokes

Components

Hypergraph
model

Reduced
hypergraph

model

Strokes

Layout
Comp. with pos.

Hypergraph
model

13 / 13 Volume X (2010)

74

Electronic Communications of the EASST
Volume X (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

From the Behavior Model of an Animated Visual Language to its Editing
Environment Based on Graph Transformation

Torsten Strobl, Mark Minas, Andreas Pleuß, Arnd Vitzthum

13 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

75

http://www.easst.org/eceasst/

ECEASST

From the Behavior Model of an Animated Visual Language to its
Editing Environment Based on Graph Transformation

Torsten Strobl1, Mark Minas1, Andreas Pleuß2, Arnd Vitzthum3

1 [Torsten.Strobl,Mark.Minas]@unibw.de, Univ. der Bundeswehr München, Germany
3 Andreas.Pleuss@lero.ie, Lero, Univ. of Limerick, Ireland

4 Vitzthum@informatik.tu-freiberg.de, Technische Univ. Bergakademie Freiberg, Germany

Abstract: Animated visual models are a reasonable means for illustrating sys-
tem behavior. However, implementing animated visual languages and their editing
environments is difficult, so guidelines, specification methods, and tool support are
necessary. A flexible approach for specifying model states and system behavior is to
use graphs and graph transformations. Thereby, a static graph does not necessarily
represent a static view on the system; instead, it can be visualized with animations.
Graph transformations are triggered over time in order to control the system behav-
ior. This means starting, modifying, and stopping animations as well as changing
the system structure, e.g., by adding or removing elements to or from system com-
ponents, respectively. These concepts had already been added to DiaMeta, a frame-
work for generating editing environments, but they provide only low-level support
for specifying and implementing animated visual languages; specifying complex
dynamic systems was still a challenging task. This paper proposes the modeling
language AML, which allows for modeling behavior and animations on a higher
level of abstraction by decomposing a dynamic system into its basic constituents.
Models of this language are then translated into a low-level specification based on
graph transformations. The approach is demonstrated using a traffic simulation.

Keywords: animated visual language, behavior modeling

1 Introduction

Visual modeling languages (VLs) are widespread in engineering and computer science. Several
frameworks and tools have been realized that make implementing VLs, i.e., providing tool sup-
port for such models, easier. DiaGen/DiaMeta [6], GenGED [1] or AToM3 [5] are only a few
of them. The majority of VLs are static; each model is a static diagram. However, there are
also dynamic VLs with animated diagrams, e.g., Pictorial Janus [3] or ToonTalk [8] and many
further examples in simulation, biology, or chemistry. However, there is still a lack of tool sup-
port, so VLs usually have to be implemented manually. Recently, a new approach for specifying
interactive dynamic VLs based on graph transformation (GT) has been proposed and realized
within the DiaMeta tool [12]. Previous approaches based on GT (e.g., [1]) use graphs for rep-
resenting static model states whereas the effects of GTs can be animated. Graphs in the new
approach [12], in contrast, do not necessarily represent the static aspect of a model, but rather
its dynamic aspects. GTs, when triggered at specific points of time, modify such graphs and im-
plement the dynamic behavior of the system. As a consequence, GTs can start, change, or stop

1 / 13 Volume X (2010)

76

mailto:[Torsten.Strobl,Mark.Minas]@unibw.de
mailto:Andreas.Pleuss@lero.ie
mailto:Vitzthum@informatik.tu-freiberg.de

From the Behavior Model of an Animated VL to its Editing Environment

animations, for example. GTs can easily describe interactions within the model or between user
and model, too. This approach allows for specifying dynamic VLs including rather complicated
animations and interactions, e.g., several concurrent animations may simultaneously take place
in a model. However, GTs without further abstraction mechanisms do not provide sufficient
support for the easy specification of complex animations. This paper addresses this problem and
proposes the Animation Modeling Language (AML), which is based on previous work with the
Multimedia Modeling Language (MML) [10] and the Scene Structure and Integration Modeling
Language (SSIML) [14]. Its purpose is the modeling of behavior and animations on a higher
level of abstraction. It allows to decompose a dynamic system into its basic constituents and to
describe behavior by hierarchical automata. AML models can then be refined and transformed
into a specification for DiaMeta following the approach presented in [12].

The rest of the paper is structured as follows: The next section introduces a traffic simulation
as the running example. Section 3 then briefly outlines the specification approach for animated
interactive VLs presented in [12]. AML and the translation of AML models into a specification
for DiaMeta based on GT are described in Sections 4 and 5. Section 6 reports on related work,
and Section 7 concludes the paper.

2 Running Example: Traffic

Traffic simulations can be considered as complex dynamic systems. The modeling of the behav-
ior for each traffic participant in such simulations is non-trivial because participants have to take
care of many different situations. For this running example, simplified but still complex aspects
of a traffic simulation have been chosen and realized in a system called Traffic. The road net-
work in this system contains the following components: Roads, Intersections and EntryExit points.
Thereby, a Road always connects two of the other components. It is not necessarily straight, i.e.,
it can also have turns based on cubic curves. An Intersection always has a predefined dimension
and one connection point for each cardinal direction. Finally, there are EntryExit points which are
special elements where cars can enter or exit the simulation.

Each Intersection has one 4-state TrafficLight (states Go, Caution, Stop, and Ready) for each di-
rection. The duration of states Go and Stop is configurable by a property interval available for
each Intersection, and as a special feature for interactivity, the user is also allowed to click on an
Intersection in order to trigger an immediate switch. Each EntryExit “produces” cars randomly. A
parameter randomNext specifies the maximal amount of time between two cars. Cars that arrive
at an EntryExit are “consumed” by the EntryExit and disappear.

Cars can accelerate and brake, but they have a fixed maximum speed. Cars must stop at a
traffic light if it is in states Stop or Caution as long as there is enough time for stopping. At a
predefined distance in front of each Intersection, Cars also indicate the aim to turn left or right
with the corresponding turn signals, and their straight motion without operating the signals. This
decision is also randomized for each Intersection. Cars have to obey apparent rules before and
while turning, e.g., left-turning drivers do not have priority when oncoming traffic blocks the
road. In addition, drivers also have to watch cars in front of them and must start braking if the
car in front is stopping, and if the safety distance is violated otherwise. If the front car is starting
again, a minor delay time for restarting the car behind is applied in order to imitate real world

Proc. GraBaTs 2010 2 / 13

77

ECEASST

Figure 1: Screenshots: (a) editor during animated simulation, (b) zoomed

flow of traffic. Finally, Cars also have to watch traffic jams, i.e., they must stop in front of an
Intersection if the destination street is jammed.

Fig. 1 shows two screenshots of a Traffic editor whose code has been generated based on a
DiaMeta specification. An animated example can also be found online1. While (a) shows the
whole editor which was used to build the shown road network, (b) is a zoomed illustration during
animation runtime. Although the specification allows for the generation of a Traffic editor, the
following mainly focuses on dynamic aspects of Traffic shown in this editor.

3 Animation by Graph Transformation with DiaMeta

The GT-based approach for specifying animated interactive VLs described in [12] uses hyper-
graphs for internally representing animated visual models. Each model component (e.g., a Car, a
Road, or an Intersection in the Traffic example) is represented by a component hyperedge that vis-
its the nodes representing the component’s attachment points. These hyperedges carry attributes
representing properties of their component, e.g., its position. Model hypergraphs also contain
relation edges (binary hyperedges), that stand for relationships between components, and further
link hyperedges which have multiple purposes as shown later. The visual model is just a view of
the hypergraph and depends on the hypergraph’s attributes, but also on the continuously proceed-
ing time. This means that a hypergraph without changing its structure or its attributes may still
represent a visual model that is currently being animated, i.e., the hypergraph represents both the
current structure of a visual model and its current animation state. Changes of the structure and
animation state are the result of events, which may be triggered externally, e.g., by the user, or
internally, e.g., when a running car must start breaking because it is approaching an intersection
with a red light. With regard to such events, our approach is closely related to DEVS (cf. [12]).

External as well as internal events are GT programs consisting of GT rules together with
a control program that modify the hypergraph of the animated visual model together with its
attributes. However, GTs representing external events are handled differently from GTs rep-

1 http://www.unibw.de/inf2/DiaGen/animated

3 / 13 Volume X (2010)

78

http://www.unibw.de/inf2/DiaGen/animated

From the Behavior Model of an Animated VL to its Editing Environment

resenting internal events: A GT that represents an external event is performed immediately as
soon as the external event is triggered, e.g., when the user pushes a button. An internal event, in
contrast, occurs after a certain amount of time depending on the current structure of the visual
model and its animation state. Therefore, the specification of an internal event consists of a GT
and a time calculation rule. This special rule is used for determining the point of time when
such an internal event occurs: Whenever the hypergraph of a visual model is changed due to an
event, the runtime system has to check which internal events may happen next. This is done by
examining the GTs of all internal events and checking whether they are enabled. However, the
enabled transformations are not yet actually performed. Instead, the time calculation rules are
used to compute the points of time when the events will occur. The GT of the earliest internal
event is actually performed at the computed point of time if no external event has been triggered
meanwhile, changing the model’s hypergraph and possibly removing other scheduled internal
event. This procedure of computing the next internal event is repeated after each modification of
the model’s hypergraph.

This specification approach has been realized within the DiaMeta tool and has been used for
several animated VLs as described in [12]. However, this specification approach can hardly be
applied to more complex animated VLs without analyzing required structures and events first.
The large amount of required events (resp. GT programs), which appear confusing, is a inhibition
threshold for realizing the VL specification. The following section introduces the more abstract
modeling language AML, which addresses this problem.

4 Animation Modeling Language

Because of the complexity of Traffic, we propose to use an appropriate modeling language before
specifying an animated VL and its behavior for DiaMeta. This section introduces the Anima-
tions Specification Language AML, which is based on previous work with two other modeling
languages MML [10] and SSIML [14]. The long-term goal of AML is to define general concepts
for modeling interactive animations which can be applied in other modeling languages, e.g. for
multimedia or augmented reality. In the context of this paper, AML is used for a high-level speci-
fication of animated VLs from which the GT-based implementation can be derived. A simplified
metamodel of AML is shown in Fig. 2 which presents AML as extension of UML elements.

The main structural elements in AML are visual elements. We adopt the concept of media
components [10] to model them. A media component encapsulates some media content together
with basic functionality, e.g., methods that render or play the media content, such as audio,
video, 3D graphics. However, we will focus on 2D graphics in the following. Each media
component, such as 2D graphics, provides some standard properties and operations depending
on its media type, e.g. size and position for graphics. In addition, custom properties, operations,
and associations can be specified in the same way as for UML components. For instance, Fig. 3
shows the graphics component for Intersection and its custom property interval, but without custom
operations. Standard properties and operations need not to be specified explicitly in the model.

A media component usually consists of several parts, e.g., a video is composed of multiple
images or a graphic consists of different shapes. These inner parts can be important for the
application’s behavior: For instance, complex animations often consist of multiple parts, such

Proc. GraBaTs 2010 4 / 13

79

ECEASST

Figure 2: AML metamodel (simplified)

as a moving car whose turn signals should blink when it drives while turning. This requires
that the graphics of the car’s turn signals are not part of the car’s graphic itself, but attached
graphics which can be accessed at runtime. Moreover, distinction between different parts is also
important for event handling: For instance, the user might trigger different functionality when
clicking on the intersection itself or one of its traffic lights. Therefore, the inner structure of
media components needs to be defined in AML.

A media component’s inner structure is defined in terms of inner properties which are orga-
nized in a hierarchical manner. Manipulations of parent properties also affect their children; e.g.,
if the car turns, the attached turn signals must turn as well. An inner property has a name, an
optional type, and an optional multiplicity. A type needs only to be specified to indicate that this
inner part is an instance of another media component. If no type is specified, the media part is just
an instance of an anonymous media component. A multiplicity can be specified to indicate mul-
tiple instances. For instance, the Intersection graphics in Fig. 3 consists of a roadsCrossing which
contains four trafficLights. The latter ones are instances of another media component TrafficLight
while for roadsCrossing no further type is specified.

Dynamic behavior of animations is modeled using specific kinds of events. In conventional
interactive applications, events are mainly triggered by user actions, such as pressing a button.
However, applications with complex animations require additional kinds of events resulting from
the dynamic behavior of media components. For instance, behavior should be triggered if a
moving object reaches a specific position or touches another object on the screen (e.g., a car
reaches a traffic light) or if a certain point of time is reached.

In AML, this is modeled by different kinds of sensors. Four kinds are presented in this paper.
Fig. 3 shows several sensors which are denoted similar to an accept event action in UML. Fun-
damentally, a sensor is owned by a media component or by a media component’s inner property.
A user sensor listens for user events, such as clicks on a specific component. For instance, Click-
Intersection listens for a user click on roadsCrossing which is a part of an Intersection. A signal
sensor such as NextLightSignal is similar, but is used for passing events internally, so media com-
ponents can pass messages to each other. A collision sensor has a relationship to one or more
other graphic components (called opponents) and triggers an event when its owner collides with
its opponent(s), i.e., when they overlap on the screen. The collision sensor DecideDirection owned

5 / 13 Volume X (2010)

80

From the Behavior Model of an Animated VL to its Editing Environment

Figure 3: AML model: media components, associations, inner structures and sensors

by the graphic component Car triggers an event as soon as the car reaches a specific area on its
street. As a consequence, the driver decides upon a direction and starts indicating, if necessary.

A sensor can also be associated with OCL constraints to specify that the sensor is active only
under certain conditions. Most sensors in Fig. 3 contain constraints, but details are not illustrated
there. Several additional keywords such as owner, opponent (sensor) or parent (inner property)
are available in constraint expressions allowing to refer to involved components or to navigate
through their structures. A special kind of sensors, the constraint sensor, is always modeled
with OCL expression. The purpose of this sensor type is to observe connected components for
satisfying the OCL constraint. An example is sensor AssociateFrontCar which checks whether a
car is driving behind another one on the same RoadSide, but they have not been associated using
frontCar yet. The sensor can fire an event which associats both cars then.

The behavior and animations of an media component or an inner property is modeled by a
special kind of state machine (see Fig. 4). As different aspects of one component can have
their own behavior, multiple state machines resp. regions can be executed in parallel. The state
machines basically support the same concepts as state machines in UML, i.e., states, pseudo
states, parallel states, state transitions, guards, and activities associated with states or transitions.
Expressions in the state machines can refer to all properties and operations of its owner.

Proc. GraBaTs 2010 6 / 13

81

ECEASST

Figure 4: AML model: state machines and animation behavior (excerpt)

The most important triggers for transitions are the sensors (see above). The sensor’s name
can be denoted at the transition which means that the transition is performed when the sensor
triggers an event. Next to events effected by sensors, it is also possible to use elapsed time events
or change events as trigger for transitions. The former is indicated by keyword after and occurs
automatically after a period of time in the state, the latter is indicated by when and occurs as soon
as annotated constraints are satisfied.

Finally, transitions can also send signals to other components. In AML, this is denoted ex-
plicitly by a special kind of send signal action where one or more receivers of the signal can
be specified explicitly (using the keyword receiver). Such signals are designed for correspond-
ing signal sensors of the receiver. After receiving a signal, these sensors trigger other events, if
possible. An example in Fig. 4 is NextLightSignal which is sent by an Intersection to each of its
TrafficLights at the same time one of the attached state transitions is performed.

The most important AML-specific concept is a special kind of state: animation states. They
define the change of properties over time while the owner of the state machine is in this state (i.e.,
the animation of the graphic component or a part of it). Animation states have a small symbol
in the top right corner and animation instructions at the bottom. Within these instructions, prop-
erties of media components, e.g., position or angle, can be bound to expressions. Fig. 4 shows
two examples of animation states. For instance, state DecisionLeft describes the blinking of the
car’s left turn signal by switching the visibility attribute of graphic component SignalLeft on and
off depending on the elapsed time (denoted by <t>) and a constant for the interval.

5 Translating AML Models to DiaMeta Specifications

AML models describe all dynamic aspects of an animated VL. This section describes how a Dia-
Meta specification (called “specification” in the following) can be derived from an AML model

7 / 13 Volume X (2010)

82

From the Behavior Model of an Animated VL to its Editing Environment

Figure 5: Intersection and TrafficLight Figure 6: Car associated with TrafficLights

(called “model”). So far, there is no automatic translation process from model to specification.
Instead, a model is manually translated into a specification using five steps (see Fig. 8):

(1) Static components and dynamic components of the VL represented by AML media compo-
nents must be specified. (2) The resulting specification must be extended by constructs allowing
for the representation of all states within the AML model. (3) GT rules must be derived from the
model in order to map each state transition. (4) Resulting GT rules must be specified as DiaMeta
events. (5) Animations during animation states must be considered.

Each of the following subsections describes one step for Traffic. Please note, that only a rough
picture of these steps can be presented due to the space limitations of this paper. The translation
starts with the specification of static VL components (1.1) and dynamic VL components (1.2).

(1.1) As a first step, the AML media component model (see Fig. 3) must be investigated for
static language elements. While independent media components are declared as regular VL com-
ponents, media elements that are used as inner properties must be specified as sub-components,
i.e., they are represented by so-called sub-component (hyper-)edges being connected to the com-
ponent hyperedge of its parent component through appropriate nodes. Fig. 5 shows an Intersection
as a component hyperedge and its trafficLights as sub-component edges.

(1.2) The AML model usually contains further media components and associations that are
used during animation only (e.g., Car); such elements, hence, are maintained by state transitions
of the behavioral model. For example, AML associations belonging to dynamic aspects require
the specification of so-called animation (hyper-)edges which can link components in order to
represent associations. Fig. 6 shows animation edge LDriveDecision which corresponds to both
AML associations DriveDecisionFrom and DriveDecisionTo. The shown graph represents a car which
has decided to drive from the first traffic light attached to LDriveDecision to the second one.

(2) The next step is to translate the state machine states (see Fig. 4). Thereby, the state of
the dynamic system must be expressible by the graph representing the model (cf. Sec. 3), i.e.,
specifications which allow for the characterization of each component’s state are required. In
some cases, no additional specification is necessary because a state can already be determined
implicitly because of animation edges. The state of a Car’s state machine DrivingDecision, for
instance, is already characterized by edge LDriveDecision (cp. Fig. 6). Depending on the linkage
to trafficLight edges, it is determined if the driver wants to drive straight, left, right, or has not
decided yet (no such edge). Another specification option for embedding state information is to
create an explicit state attribute for a (sub-)component edge storing the currently active state.

(3) Next, state transitions modeled in AML are analyzed in order to derive GT rules that, when
executed, realize the behavior of the AML state machines. As described above, states are encoded

Proc. GraBaTs 2010 8 / 13

83

ECEASST

in the hypergraph of an animated model. A GT rule simulating a transition from state A to state
B, hence, must be enabled if the state machine is in state A and also the guard conditions of the
transition are met, which includes guards of triggers. As a result, the rule has to modify the
hypergraph model such that it contains the encoding of state B. In the simplest case, switching
from state A to B means changing the state attribute of a component. In addition, the established
GT rule resp. program also has to perform actions described by the AML state transition.

(4) Each state transition shown in the last section is triggered by events. As explained in Sec. 3,
two kinds of events can be distinguished and specified for DiaMeta, so the following subsections
address the specification of external events (4.1) and internal events (4.2).

(4.1) In AML, events are observed by sensors, i.e. user sensors such as ClickIntersection in
case of external events. In terms of DiaMeta, the specification of an external event means the
specification of a GT program which is executed directly if the user selects a component and
pushes a defined key or button. This event-related GT program, and the following is also true for
internal events, must choose the applicable state transition depending on the recipient’s current
state and execute the according GT rule specified in the previous section. In addition, OCL
constraints of sensors must be included in the GT program.

In a sense, but not correct in terms of definition, receiving signals (e.g. NextLightSignal) can
also be considered as external event for the recipient. Therefore, signal sensors can be realized
by a regular GT program which can be executed directly.

(4.2) The DiaMeta specification of internal event specifications follows the guidelines de-
scribed in the previous step, except that internal events are not published for external systems
resp. the user. However, the time calculation rule for internal events must still be specified.
In order to derive meaningful additional constraints and time calculation rules, different AML
elements (cf. Sec. 4) indicating internal events are described in the rest of this step:

The simplest internal events found in the AML models are elapsed time events indicated by
keyword after. In this case, the GT rule is already complete, and the required time calculation
rule can be deduced directly by adding the argument of the elapsed time event (e.g., “3 sec”) to
the time the state has been entered, which implies that this state entry time must be tracked at
corresponding state transitions (e.g., by maintaining an appropriate component attribute). An-
other kind are change events indicated by keyword when. They can also result in a simple time
calculation rule, i.e., the rule that always returns the time when the internal event is calculated.
This means that the state transition is performed immediately if the graph pattern and additional
conditions match. This implies that arguments of the change event must become part of the GT
rule’s graph pattern and conditions. However, if a condition depends on a value which changes
during animation, the time calculation rule, which has to calculate the first point of time the
condition holds true, becomes more complex.

Finally, constraint and collision sensors must trigger internal events. Both are similar to
change events (see above). A usual difference is that constraint sensors observe the relation
of multiple components instead of values of a single component. Therefore, the graph pattern
is extended by the hyperedges of each (sub-)component which is observed by the sensor. Colli-
sion sensors are similar to constraint sensors, but they imply additional constraints that indicate
colliding components. This constraint is often related to movement animations of components.
Because animations can be visualized between state changes, the time calculation rule has to
supply the point of time when the first collision happens. An exemplary collision sensor is Traf-

9 / 13 Volume X (2010)

84

From the Behavior Model of an Animated VL to its Editing Environment

Figure 7: Event specification for DecideDirectionLeft and according state transition

ficLightBreak. The required internal event specification can be found in Fig. 7. The figure2 also
illustrates from which AML elements specific parts of the rule have been derived from.

(5) The remaining part is the interpretation of the animation states within the AML model, e.g.,
a Car which is moving along a Road or a Car with an activated turn signal signalLeft (see Fig. 4).
The animation instructions stated in animation states indicate which and how the attributes of the
component must be changed while an animation state is active (cp. Sec. 4). These instructions
must be transfered into the DiaMeta specification. In terms of AML, property changes are per-
formed while in a state without any transition necessary. For DiaMeta this means that graphical
primitives are not drawn using static attributes (such as the position), but using dynamic values
derived from such attributes and modified by referring to the current animation time and to the
associated animation instruction. Finally, when leaving or entering an animation state, it is often
necessary to update static attributes which have been the basis for animation visualization before.
Within the DiaMeta specification this must be done by the GT rule which realizes the correspond-
ing state transition. For instance, a Car is moved during an animation state called Drive. The car’s
position (static attributes) must be updated when leaving this state. Otherwise, the system would
have no information about the position of the Car after the movement animation.

6 Related Work

AML integrates concepts from two existing modeling languages: the Scene Structure and Integra-
tion Modeling Language (SSIML) for 3D development and the Multimedia Modeling Language
(MML) for interactive multimedia applications. SSIML/Behaviour [14] is a modeling language
based on UML2 state machines which also introduced animation states for modeling animation
details. Although SSIML/Behaviour focuses on 3D applications. MML [10] is a platform-
independent language for model-driven development of multimedia applications. It provides
concepts such as complex media components with inner structure, user interface elements, and
sensors, which have been reused here. However, it does not support modeling animations yet
and will be extended with the concepts presented in this paper in the future.

2 It shows the GT rule within one segment: parts which are added by the rule are drawn in green with “+++”. Attribute
conditions and modifications are illustrated by expressions within the two extra boxes Conditions and Actions. The
time calculation rule is shown in box Time.

Proc. GraBaTs 2010 10 / 13

85

ECEASST

In the area of interactive multimedia, there are only few other modeling approaches so far.
OMMMA [11] allows modeling multimedia applications including media objects. Dynamic
behavior is specified by statecharts while static animations are modeled by extended UML se-
quence diagrams. However, the models published so far are on a high level of abstraction and
not intended for code generation. Kienzle et al. [4] presented a modeling approach for computer
games illustrated by a tank game. They use statechart on multiple abstraction layers for different
aspects which are specially suited for game design: sensors, memorizers, strategical deciders,
tactical deciders, and actuators.

AML allows for separated behavior specifications of different components, which interact in
a common environment. This possibility makes AML also attractive for the specification of
domain-specific visual languages for agent-based modeling and simulation. In this field of re-
search other tools are already available, e.g., in [9] a toolkit for specifying the behavior of agents
and their visual appearance within a modeling environment is demonstrated.

There are also other concepts for the animation of VLs based on GT. An example is the ap-
proach described by Ermel [1] which basically allows for the specification of animations for
discrete event simulations. However, animations are visualized for state transitions resp. GTs
which restricts VLs especially in terms of interactivity and parallelism of independent anima-
tions. The resulting animations are self-running movies, and amalgamated GT rules are already
required for the specification of less complex examples such as animated Petri nets.

In [7] a set of visual languages is introduced in order to describe the behavior of metamodeled
languages. The concepts are also based on events and state machines, but most languages are
less close to UML. In addition, the concepts include the modeling of user interfaces, whereas
aspects of smooth graphical animations are not covered. Concerning the flexibility, the approach
is less adequate for a language with many independently animated actors resp. agents such as in
Traffic, because the behavior is represented by one state machine.

Another approach for the application of models in order to implement graph-based simulations
is shown by Syriani [13]. He describes how DEVS models can be used as a semantic domain
for programmed GTs which allows for simulation-based design. However, the concepts describe
GTs consuming time and because of possible needs for parallel executions or interruptions, ad-
ditional control structures are required.

7 Conclusions

In order to generate the animated Traffic editor, the dynamic aspects of the DiaMeta specification
have been systematically derived from an AML model. Thereby, AML has been used for modeling
the behavior of components, their interaction, and reasonable animation descriptions. Different
levels of details can be chosen, so AML can illustrate rough ideas as a starting point for DiaMeta
specifications, but also models which are very close to the resulting specifications. On the other
side, fully featured AML diagrams even document DiaMeta specifications which are usually less
explanatory. Using AML and DiaMeta is a promising approach for simplifying the specification
effort for complex VLs.

We now aim at an automated transformation of customized AML diagrams into DiaMeta spec-
ifications, so further research objectives include platform-specific extensions of AML allowing

11 / 13 Volume X (2010)

86

From the Behavior Model of an Animated VL to its Editing Environment

for the automated generation of graph-based VL specifications. In this context, a reasonable set
of predefined animation instructions must also be found and offered by our framework in order
to avoid self-programmed routines realizing animations or collision detection.

Bibliography

[1] C. Ermel. Simulation and Animation of Visual Languages based on Typed Algebraic Graph
Transformation. PhD thesis, Tech. Univ. Berlin, Books on Demand, Norderstedt, 2006.

[2] S. Gyapay, R. Heckel, D. Varró. Graph Transformation with Time: Causality and Logical
Clocks. In Proc. ICGT ’02, LNCS 2505, Springer, 2002, pp. 120–134.

[3] K. Kahn, V. Saraswat. Complete Visualizations of Concurrent Programs and their Execu-
tions. In Proc. 1990 IEEE Workshop on VLs. 1990, pp. 7–15.

[4] J. Kienzle, A. Denault, H. Vangheluwe. Model-based Design of Computer-Controlled
Game Character Behavior. In Proc. Models 2007, LNCS 4735, Springer, 2007, pp. 650–
665.

[5] J. de Lara, H. Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-modeling. In
Proc. FASE ’02, LNCS 2306, Springer, 2002, pp. 174–188.

[6] M. Minas. Generating Meta-Model-Based Freehand Editors. In Proc. GraBaTs’06. Elec-
tronic Communications of the EASST 1. 2006.

[7] T. Mészáros, G. Mezei, H. Charaf. Engineering the Dynamic Behavior of Metamodeled
Languages. In Simulation 85(11):793–810, 2009.

[8] L. Morgado, K. Kahn. Towards a specification of the ToonTalk language. In J. of Visual
Languages and Computing 19:574–597, 2008.

[9] M.J. North, E. Tatara, N.T. Collier, J. Ozik. Visual Agent-based Model Development with
Repast Simphony. In Proc. of the Agent 2007 Conf. on Complex Interaction and Social
Emergence. 2007.

[10] A. Pleuß. MML: A Language for Modeling Interactive Multimedia Applications. In Proc.
7th IEEE Int. Symp. on Multimedia (ISM’05). IEEE, 2005, pp. 465–473.

[11] S. Sauer and G. Engels. UML-based Behavior Specification of Interactive Multimedia Ap-
plications. In IEEE Symp. on Human-Centric Computing Languages and Environments
(HCC 2001). IEEE, 2001, pp. 248–255.

[12] T. Strobl, M. Minas. Specifying and Generating Editing Environments for Interactive
Animated Visual Models. In Preproc. GT-VMT’10, 2010. http://www.cs.le.ac.uk/events/
gtvmt10/GT-VMT07PreProceedings.pdf

[13] E. Syriani, H. Vangheluwe. DEVS as a Semantic Domain for Programmed Graph Transfor-
mation. In Discrete-Event Modeling and Simulation: Theory and Applications. CRC Press,
2009.

[14] A. Vitzthum. SSIML/Behaviour: Designing Behaviour and Animation of Graphical Ob-
jects in Virtual Reality and Multimedia Applications. In Proc. 7th IEEE Int. Symp. on Mul-
timedia (ISM’05). IEEE, 2005, pp. 159–167.

Proc. GraBaTs 2010 12 / 13

87

http://www.cs.le.ac.uk/events/gtvmt10/GT-VMT07PreProceedings.pdf
http://www.cs.le.ac.uk/events/gtvmt10/GT-VMT07PreProceedings.pdf

ECEASST

A Appendix

Figure 8: Overview of the translation steps

13 / 13 Volume X (2010)

88

Electronic Communications of the EASST
Volume X (2010)

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the

Fourth International Workshop on

Graph-Based Tools

(GraBaTs 2010)

Design of a SOM Business Process Modelling Tool based on the

ADOxx meta-modelling Platform

Domenik Bork and Elmar J. Sinz

12 Pages

89

 ECEASST

2 / 13 Volume X (2010)

Design of a SOM Business Process Modelling Tool based on the

ADOxx Meta-modelling Platform

Domenik Bork and Elmar J. Sinz

Department of Information Systems – Systems Engineering

University of Bamberg

Feldkirchenstraße 21

D-96045 Bamberg

{domenik.bork | elmar.sinz}@uni-bamberg.de

Abstract: The Semantic Object Model (SOM) is a comprehensive methodology for

business systems modelling. An emphasis of SOM is on modelling of business processes.

According to SOM, a business process model specifies the task layer of a business system

from an inside perspective. SOM business process modelling is grounded in systems

theory and organisational theory. A SOM business process model is perceived as a

distributed system, consisting of business objects which are coordinated in business

transactions. Both business objects and business transactions can be refined recursively.

SOM business process models are specified using a graph-based multi-view approach

which comprises a structural view, a behavioural view as well as views on the

decomposition of business transactions and business objects.

This article reports on the design of a tool which facilitates multi-view modelling of SOM

business processes. The tool is based on the ADOxx
1
 meta-modelling platform. The focus

of the article is on the design of the multi-view approach and corresponding tool functions

on the basis of the ADOxx platform.

Keywords: Semantic Object Model (SOM), ADOxx, graph-based multi-view modelling,

tool design

1 Introduction

The Semantic Object Model (SOM) is a comprehensive methodology for business systems

modelling (Ferstl and Sinz 1995, Ferstl and Sinz 1996, Ferstl and Sinz 2008). The conceptual

framework of the SOM methodology is an enterprise architecture which comprises the layers

of enterprise plan, business process model and specification of resources (Figure 1). The

enterprise plan constitutes an outside perspective on an enterprise. It focuses on the global

enterprise task and the resources to fulfil this task. The business process model constitutes an

inside perspective on an enterprise, specifying the tasks and task relations collectively carrying

out the global enterprise task. Thus, a business process model can be considered as a procedure

for executing the enterprise task. Finally, the third layer specifies the resources needed to fulfil

the business processes, particularly personnel for the execution of non-automated tasks and

business application systems for the execution of automated tasks.

1
 ADOxx is a registered trademark of BOC AG

90

Design of a SOM Business Process Tool on the ADOxx platform

Proc. GraBaTs 2010 3 / 13

Figure 1: Enterprise Architecture of the SOM methodology (Ferstl and Sinz 2006)

This paper concentrates on the middle layer of the SOM enterprise architecture, the business

process model. A SOM business process model is specified according to a graph-based multi-

view approach. Based on an integrated internal representation, two different diagrams, an

interaction schema (IAS) and a task-event schema (TES), representing a structural view and a

behavioural view on the business process model, are defined.

In contrast to other modelling approaches which focus on the drawing of a specific diagram at

a particular time, the SOM methodology utilises an integrated kind of modelling. At any time,

the different views are derived from an integrated model. Moreover, the decomposition of the

different artefacts of a business process model is an integral part of the model, too. This

characteristic allows navigation through the model by zooming in and zooming out the areas

considered at a particular time.

Over the last two decades several software tools supporting the SOM methodology have been

developed (e.g. Ferstl et al. 1994). These tools helped to utilise the SOM methodology and

enabled its application even to industry-sized projects. However, based on native software

platforms like C++, these tools were not suitable to provide enduring availability. To

overcome this shortness, it was decided to use a specialised software platform for tool

development, allowing high software productivity, easy adaption and extension of the

methodology, and integration into a tool family sharing the same platform as well as bridging

different methodologies.

This article reports on the design of a new SOM tool which is aimed to meet the requirements

mentioned above. The tool is based on the ADOxx
2
 meta-modelling platform. After a short

introduction to SOM business process modelling and the ADOxx platform, the design of the

software tool is outlined by means of mapping the SOM meta-model to the ADOxx meta-

meta-model, graph-based visualisation of the multiple views on a business process model as

well as tool functions and modelling transactions.

2
 ADOxx is a registered trademark of BOC AG

91

 ECEASST

4 / 13 Volume X (2010)

The paper is organised as follows: Chapter 2 gives a brief introduction to basic concepts of the

SOM methodology, especially to SOM business process modelling. Chapter 3 shortly

introduces the meta-modelling platform ADOxx. The core of the paper is chapter 4, outlining

the design of the SOM business process modelling tool on the ADOxx platform. The paper

ends with some conclusions and an outlook to future work.

2 SOM Business Process Modelling

The meta-model for SOM business process modelling is shown in figure 2. According to this

meta-model, a SOM business process model consists of a set of business objects, each

belonging either to the considered business system (symbol: rectangle) or to its environment

(symbol: oval). A business object encapsulates one to many tasks sharing common states and

pursuing joint goals. A task drives one to many transactions (symbol: arrow), each of them

driven by exactly two tasks belonging to different business objects. Each transaction either

transmits goods or services from one business object to another or it participates in

coordinating business objects or other transactions. Related tasks within a business object are

coupled by internal events (symbol: circle). External events model occurrences in the

environment of a business system (e.g. “the first day of a month”).

The SOM methodology for business process modelling utilises two different coordination

principles (Ferstl and Sinz 2006).

 According to the negotiation principle a transaction is decomposed into a sequence of

three transactions: (1) An initiating transaction Ti, where the objects learn to know each

other and exchange information on deliverable goods or services, (2) a contracting

transaction Tc, where both objects agree to a contract on the delivery of goods or services,

and (3) an enforcing transaction Te where the objects transfer the goods or services. The

negotiation principle can be formally specified as

T(O,O’) ::= [[Ti(O,O’) seq] Tc(O’,O) seq] Te(O,O’).

 According to the feedback control principle a business object O is decomposed into two

sub-objects and two transactions: A management object O’, an operational object O’’ as

well as a control transaction Tr from O’ to O’’ and a feedback transaction Tf in the

opposite direction. These components establish a feedback control loop, specified by a set

of components:

O ::= { O’, O’’, Tr(O’,O’’) [, Tf(O’’,O’)] }.

92

Design of a SOM Business Process Tool on the ADOxx platform

Proc. GraBaTs 2010 5 / 13

Figure 2: Business Process Meta-model of the SOM methodology (Ferstl and Sinz 2008)

The structural view (IAS) and the behavioural view (TES) are defined by projections onto the

meta-model (figure 2). Except for the notion of business transaction the views are disjoint.

Business transactions appear in both views representing the structural aspect (communication

channel) and the behavioural aspect (event) respectively. Beyond that, decomposition of

business objects and transactions establish two further views on a business process model.

To give an example, figures 3 and 4 demonstrate the IAS and TES of the simple business

process model of a trading company. An initial transaction distribution of goods from trading

company to customer has been decomposed according to the negotiation principle into an

initiating transaction information, a contracting transaction order and an enforcing transaction

delivery. The trading company itself has been decomposed applying the feedback control

principle into a management object sales, an operational object storage, a control transaction

delivery order and a feedback transaction delivery report. These two decompositions result in

the IAS depicted in figure 3. Figure 4 shows the corresponding process flow by means of a

TES. The TES specifies the sequence of the tasks obtained from the decompositions named

above. The information transaction is performed by the tasks I> (“send information”) of the

business object sales and >I (“receive information”) of the business object customer. After

customer has received necessary information, he/she is able to send an order (task C>) to sales

and so on.

Figure 3: SOM Interaction Schema (IAS) Figure 4: SOM Task-Event Schema (TES)

93

 ECEASST

6 / 13 Volume X (2010)

3 The ADOxx meta-modelling Platform

ADOxx is a meta-modelling platform which is aimed to facilitate design and implementation

of modelling tools for domain specific languages (DSL). The platform has been developed by

the BOC-Group
3
, a spin-off of the University of Vienna. Over the last decades, ADOxx has

been used to implement modelling tools for a wide area of domains like e-learning, knowledge

management, strategic management and many others more (Schwab et al. 2010, Fill 2005,

Lichka et al. 2002, Karagiannis and Bajnai, Karagiannis and Telesko 2000, Junginger et al.

2000).

ADOxx provides the designing engineer of a modelling tool with basic functions for

representation and editing of diagrams, persistent storage of models, simulation and evaluation

of models as well as import/export of models. To utilise these functions, a tool designer has to

map the meta-model of the DSL onto the meta-meta-model of ADOxx. In other words, the

meta-model of the DSL has to be specified using the concepts provided by the ADOxx meta-

meta-model. In this way the ADOxx platform allows efficient design and implementation of

both powerful and flexible DSL modelling tools.

Figure 5: Extract of the ADONIS meta-meta-model (Junginger et al. 2000)

The ADOxx platform fosters the concept of meta-modelling which is widely used in the field

of modelling (see e.g. OMG Meta Object Facility Object Management Group 2006). Within a

hierarchy of meta levels a model (schema) at level 1 represents an instance of a corresponding

meta-model at level 2 (Ferstl and Sinz 2008). The meta-model in turn is an instance of a meta-

meta-model at level 3. Conversely, several meta-models which comply with a given meta-

meta-model usually can be specified and many schemata may meet a given meta-model.

3
 http://www.boc-group.com/de/, last visit: 18.05.2010

94

http://www.boc-group.com/de/

Design of a SOM Business Process Tool on the ADOxx platform

Proc. GraBaTs 2010 7 / 13

On level 3 the ADOxx platform provides a meta-meta-model (often also called meta²model)

defining some generic modelling classes and relations as well as corresponding attributes and

constraints. The meta-meta-model is implemented in C++ and cannot be modified by a tool

developer. The core of the ADOxx meta-meta-model is shown in figure Figure 5. The most

important concepts, Modelling Class, Relation Class and Model Type are highlighted.

To implement a specific DSL on the ADOxx platform, the meta-model of the DSL has to be

specified as an instance of the meta-meta-model. Thereby the concepts of the meta-model have

to be mapped to those of the meta-meta-model (e.g. an activity of the BPMN language is

mapped onto the concept modelling class). Afterwards, the meta-model is described in the

ADONIS Library Language (ALL). Finishing this step, the meta-model of a methodology is

defined within ADOxx. The tool is now ready to create simple diagrams, meaning that objects

can be placed and connected by arcs. For methodologies like SOM, the more important and

challenging step is to implement the tool functions and modelling transactions (e.g.

decomposition rules, model visualisation, model consistency, zooming etc.). For this purpose

the scripting language AdoScript is provided by the platform.

4 Design of a SOM Business Process Tool on ADOxx

The design of a modelling tool for SOM business process models within the ADOxx meta-

modelling platform consists of three major steps. First, the meta-model for SOM business

process models is mapped to concepts provided by the meta-meta-model of ADOxx (section

4.1). In the second step the visualisation of the models is conceived using a graph-based multi-

view approach (section 4.2). The third step comprises the design of the tool functionality

including the concept of modelling transactions (section 4.3). A modelling transaction is

perceived as a sequence of editing operations which transform a consistent state of the model

into a new state, which again is consistent according to syntax and semantics.

4.1. Meta-model Mapping

As mentioned above, the first step in creating a modelling tool with ADOxx is to define a

mapping between the domain-specific meta-model and the meta-meta-model provided by the

platform (Figure 5). In case of the SOM business process meta-model the mapping is basically

defined as follows:

SOM Meta-model ADOxx Meta-meta-model

Business Object
Modelling Class

Task

Business Transaction
Relation Class

External/Internal Event

Interaction Schema

Model Type
Task-Event Schema

Object Decomposition

Transaction Decomposition

Table 1: Meta-model mapping

95

 ECEASST

8 / 13 Volume X (2010)

Furthermore, the mapping requires a specification of the syntax of the modelling language,

particularly the feasible connections between classes. Finally the attributes (AttrRep) and a

graphical representation (GraphRep) of the classes have to be defined.

As mentioned before, a SOM business process model consists of an internal representation and

several corresponding views. The views are diagrams, representing an interaction schema, a

task-event schema as well as the decomposition of business objects and business transactions.

Both the internal representation of a model and the views require the definition of each a

model type in ADOxx. A model type specifies a set of classes and relations between classes.

Having finalised these specifications, a modeller is able to create diagrams by dropping model

elements on the drawing board and linking them by arcs. It is worth mentioning, that at this

point the implementation of a tool for a common modelling language on ADOxx is done.

However, SOM business process modelling is a sophisticated methodology which requires

some more effort for tool implementation.

4.2. Graph-based multi-view visualisation

A SOM business process model is represented by several complementary views derived from

one integrated internal model. The model-view-controller (MVC) paradigm (Reenskaug 1979)

has been approved to be a suitable design pattern for such a requirement. For the design of the

SOM modelling tool the MVC paradigm is utilised to propagate any action the modeller

performs on a particular view to the internal model representation and from there to all other

views as far as these views are concerned by these actions. For example, changing the name of

a business object in one view causes changing the name in all other views showing the

considered business object.

For the visualisation of SOM business process models three different types of diagrams, each

corresponding to an ADOxx model type, have been designed and implemented on the

platform:

1. Decomposition diagram

Decomposition of both business objects and business transactions is represented using

a tree-based graph. This style of visualisation helps the modeller to quickly recognise

the recursive decomposition of objects and transactions. The decomposition of objects

is displayed on the upper right side, the decomposition of transactions is shown on the

upper left side of the tool window. Within a decomposition diagram, no information

about the connections of business objects and business transactions is displayed. This

information is subject of the following two diagrams.

2. Structure diagram

This type of diagram is used to represent the structural view on a SOM business

process model, the interaction schema (IAS). An IAS consists of business objects

which are connected by business transactions. The IAS is displayed on the lower left

side of the tool window.

96

Design of a SOM Business Process Tool on the ADOxx platform

Proc. GraBaTs 2010 9 / 13

3. Behaviour diagram

Complementary to the structure diagram, this type of diagram shows the behavioural

view on a SOM business process model by a task-event schema (TES). A TES

consists of tasks, each belonging to a business object. Tasks are connected by internal

events (if the tasks belong to the same business object) or business transactions (if the

tasks belong to different business objects). The TES is displayed on the lower right

side of the tool window.

Figure 6 illustrates the graph-based multi-view visualisation of SOM business process models

on the ADOxx platform.

Figure 6: Graph-based multi-view visualisation in ADOxx

With increasing model size, comprehension of a SOM business process model, presented by

four different views, can easily overstrain the modeller. Therefore, the visualisation of the

model has been improved effectively using different techniques.

First, any object or transaction that is currently not visible in the IAS and TES will be grey-

shaded in the object and transaction decomposition window. This retains the modeller from

getting lost when handling large models. Furthermore, a red border is drawn around any object

that is selectable in the process of reconfiguring transactions to new objects which are resulting

from the decomposition of a given object (section 4.3 for a detailed description of the tools’

functions).

97

 ECEASST

10 / 13 Volume X (2010)

Additionally, two layout algorithms have been implemented in order to optimize the

positioning of business objects and the routing of the business transactions in the interaction

schema:

- Auto-Layout

The auto-layout algorithm draws every business transaction either directly, if the

connected business objects are placed on the same vertical or horizontal position or

with a right angle otherwise. Any additional ingoing or outgoing transaction is shifted

a bit to the left or right alternatingly in order to prevent overlapping transactions.

- Smooth Edges

Calling this algorithm ensures, that any business transaction is drawn on the most

direct way between the connected business objects. Again, multiple ingoing or

outgoing transactions are shifted a bit to the left or right.

Besides the discussed algorithms, the modeller is able to optimize the positioning of modelling

elements and relations using the functionality provided by the platform (e.g. adding an edge to

a relation or moving of elements with the associated relations on the modelling area using the

mouse or keyboard).

4.3. Tool Functions and Modelling Transactions

As any modelling tool, the SOM tool provides a set of functions via its user interface. In many

cases, a modelling step requires the execution of a sequence of functions. Such a sequence,

transforming a consistent state of the model into a new state, which again is consistent with

respect to syntax and semantics, is perceived as a modelling transaction. In the following, tool

functions as well as modelling transactions are illustrated by means of use cases. Each use case

refers to a typical scenario a modeller carries out when using the tool.

- Decomposition of business objects and business transactions

The SOM methodology comprises a set of rules for the decomposition of business

objects and business transactions (chapter 2 for selected rules). The rules can be

applied recursively in order to refine a business process model thereby revealing its

coordination.

- Reconfiguration of relationships within a business process model

After decomposing a business object or a business transaction, the modeller must

reconfigure the new objects or transactions in order to adjust the IAS or TES to the

more detailed level of the business process model.

- Navigation within a business process model

Within the hierarchy of business objects and business transactions, the modeller is able

to navigate. The navigation is supported by a zoom operator, meaning to perform no

changes on the integral model. Navigation enables browsing through a large business

process model in order to retain overview.

98

Design of a SOM Business Process Tool on the ADOxx platform

Proc. GraBaTs 2010 11 / 13

A typical modelling transaction consists of the decomposition of some business object or

business transaction followed by a reconfiguration step to adjust the IAS and TES to the new

refinement level. The SOM tool supports modelling transactions by providing guidance for the

modeller through the steps necessary to transform a consistent state of the model to a new one.

Generally, usage of the tool is dialog-driven and guided by the context menu of an object or a

transaction. In contrast to other modelling tools, drag & drop technique is utilised scarcely.

The only case in which the modeller draws a relation between two modelling elements is when

adding internal events to a task-event schema in order to determine the behaviour of the

business process. Figure 7 illustrates the dialog-driven procedure of reconfiguring the relations

on a more detailed level of the business process model. As reconfiguration has no effect on the

object decomposition view as well as the transaction decomposition view, only IAS and TES

are displayed.

Figure 7: Reconfiguring the relations within a business process model

On the left side the modeller has decomposed the business object trading company into the

objects sales and storage according to the feedback control principle (chapter 2). The

decomposed trading company object is still displayed on the left side, but grey-shaded to give

the modeller a hint about which objects are going to be removed and which transactions he has

to reconfigure using the new objects. The dialog box in the middle of the left window displays

the transactions currently not considered and asks the modeller alternatingly which

transactions he wants to reconfigure to the currently regarded object. This process is done until

all transactions are related to either sales or storage. The objects selectable while connecting

the transactions are highlighted using a dashed edge around them.

On the right side then, all transactions are reconfigured and the procedure ends with an update

of the IAS and TES diagrams using the implemented graph algorithms. Finally, the dashed

edges around the objects sales and storage are removed.

99

 ECEASST

12 / 13 Volume X (2010)

5 Conclusion and future work

This article outlines the design of a new software tool for SOM business process modelling

based on the meta-modelling platform ADOxx. The focus is on how the ADOxx platform can

be used to establish a graph-based multi-view visualisation of comprehensive business process

models based on an integrated meta-model. The paper is research-in-progress. A first tool

prototype is available and going to be used in modelling projects.

Next steps will concentrate on the third layer of the SOM enterprise architecture, namely the

functional specification of business application systems. In the SOM methodology, application

systems are specified from a functional viewpoint by two complementary schemata: a schema

of task classes (TAS) which refers to the workflow of an application system and a schema of

conceptual classes (COS) which provides corresponding business functions. Both TAS and

COS can be derived initially from a SOM business process model via a model-driven

approach. Because of its wide acceptance, BPMN (Allweyer 2008, White and Miers 2008) is a

candidate language for workflow schemata. Pütz and Sinz report on model-driven derivation

of BPMN workflow schemata from SOM business process models (Pütz and Sinz 2010).

Literatur

Allweyer T (2008) BPMN - Business Process Modeling Notation. Einführung in den Standard

für die Geschäftsprozessmodellierung. Books on Demand, Norderstedt

Ferstl OK, Sinz EJ (2006) Modelling of business systems using SOM. In: Bernus Peter,

Mertins Kai, Schmidt Günter (Hrsg) Handbook on Architectures of Information Systems,

second edition. Springer, Berlin, S. 347–367

Ferstl OK, Sinz EJ (2008) Grundlagen der Wirtschaftsinformatik, 6th, revised and extended

edition. Oldenbourg, München

Ferstl OK, Sinz EJ (1995) Der Ansatz des Semantischen Objektmodells (SOM) zur

Modellierung von Geschäftsprozessen. Wirtschaftsinformatik 37(3):209‐220

Ferstl OK, Sinz EJ (1996) Multi-Layered Development of Business Process Models and

Distributed Business Application Systems. An Object-Oriented Approach. Distributed

Information Systems in Business. Springer, Berlin:159‐179

Ferstl OK, Sinz EJ, Amberg M, Hagemann U, Malischewski C (1994) Tool-Based Business

Process Modeling Using the SOM Approach. In: Wolfinger B. (Hrsg) 24. GI Jahrestagung

1994. Innovationen bei Rechen- und Kommunikationssystemen, S. 430–436

Fill H (2005) UML Statechart Diagrams on the ADONIS Metamodeling Platform. Electronic

Notes in theoretical Computer Science (ENTCS)(127):27–36

Junginger S, Kühn H, Strobl R, Karagiannis Dimitris (2000) Ein

Geschäftsprozessmanagement-Werkzeug der nächsten Generation - ADONIS: Konzeption und

Anwendungen. Wirtschaftsinformatik 42(5):392–401

100

Design of a SOM Business Process Tool on the ADOxx platform

Proc. GraBaTs 2010 13 / 13

Karagiannis D, Bajnai J ADVISOR® - An Educational Management Tool. submitted to the

Symposium Towards the New Education Society, Zvolen, Slovakia

Karagiannis D, Telesko R (2000) The EU-Project PROMOTE: a process-oriented approach for

knowledge management. In: Proc. of the Third Int. Conf. of Practical Aspects of Knowledge

Management.

Lichka C, Kühn H, Karagiannis D (2002) ADOscore® - IT gestützte Balanced Scorecard. wisu

- das wirtschaftsstudium(7):915–918

Object Management Group (2006) OMG Meta Object Facility (MOF) Version 2.0.

http://www.omg.org/spec/MOF/2.0/, last visit: 2010-05-18

Pütz C, Sinz EJ (2010) Modellgetriebene Ableitung von BPMN-Workflowschemata aus SOM

Geschäftsprozessmodellen. In: Gregor Engels, Dimitris Karagiannis and Heinrich C. Mayr

(Hrsg) Modellierung 2010. GI, Klagenfurt, Austria, S. 253–268

Reenskaug T (1979) Thing-Model-View-Editor, an example from a planningsystem. In:

technical note, Xerox Parc

Schwab M, Karagiannis D, Bergmayr A (2010) i* on ADOxx®: A Case Study. In:

Proceedings of the 4th International i* Workshop

White SA, Miers D (2008) BPMN modeling and reference guide. Understanding and using

BPMN ; develop rigorous yet understandable graphical representations of business processes.

Future Strategies Inc., Lighthouse Point, Fla.

101

Electronic Communications of the EASST
Volume X (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Visualization of Traceability Models
with Domain-specific Layouting

Ábel Hegedüs, Zoltán Ujhelyi, István Ráth and Ákos Horváth

12 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

102

http://www.easst.org/eceasst/

ECEASST

Visualization of Traceability Models
with Domain-specific Layouting

Ábel Hegedüs, Zoltán Ujhelyi, István Ráth and Ákos Horváth ∗

(hegedusa,ujhelyiz,rath,ahorvath)@mit.bme.hu, http://www.inf.mit.bme.hu/FTSRG/
Department of Measurement and Information Systems (MIT)

Budapest University of Technology and Economics (BME), Budapest, Hungary

Abstract: Traceability models are often used to describe the correspondence between
source and target models of model transformations. Although the visual representa-
tion of such models are important for transformation development and application,
mostly ad-hoc solutions are present in industrial environments. In this paper we
present a user interface component for visualizing traceability models inside trans-
formation frameworks. As generic graph visualization methods fail to emphasize
the underlying logical structure of our model, we used domain-specific layouts by
customizing generic graph layout algorithms with data from the metamodels used
during the transformation. This approach was evaluated, among others, with the
traceability models generated by a BPEL verification transformation, which serves
as our running example.

Keywords: traceability, graph visualization, domain-specific layout algorithms

1 Introduction

Model transformations are applied increasingly in various fields of software engineering, from
business process modeling to formal verification to code generation. The models acting as
source and target for the transformations often represent different domains, thus the identification
of correspondence between them is non-trivial. Although in the field of critical systems and
services the precise recording of traceability information is a strict requirement, in many industrial
applications only ad-hoc solutions are used for handling this information.

Throughout the lifecycle of a system or product, traceability information is generated and used
for various tasks. The correspondence information are most often created at the time when the
target model is produced using the source model during the execution of the transformation. This
information can be later used for validation, verification, change management, maintenance or
back-annotation. Traceability information itself can be accessed with model transformations thus
model-based traceability solutions are advantageous [DKPF09].

A development environment that supports both the generation and visualization of traceability
information can enhance both automatic verification and human reviews during certification. We
argue that instead of viewing this information textually or as structured data, it should be stored
as traceability models and visualized graphically. After examining the most common generic

∗ This work was partially supported by the SecureChange (ICT-FET-231101) and the CERTIMOT (ERC HU 09)
projects.

1 / 12 Volume X (2010)

103

mailto:(hegedusa,ujhelyiz,rath,ahorvath)@mit.bme.hu
http://www.inf.mit.bme.hu/FTSRG/

Visualization of Traceability Models with Domain-specific Layouting

graph visualization methods with traceability models, we concluded that they fail to emphasize
the underlying logical structure and mental map, thus a different approach is required.

In this paper we present a domain-specific visualization method for traceability models by
customizing generic layout algorithms. Our approach results in a comprehensive visualization
better suited for model transformation debugging purposes than existing approaches. We also
outline the general techniques used for constructing domain-specific layouts for traceability
models, and discuss various usage scenarios of the visualization during the transformation
development process.

Our concepts are presented on a complex running example (implemented during the SENSO-
RIA European project [SEN05]) that aims at providing automated support for the verification of
processes defined in the Business Process Execution Language (BPEL) [OAS07]. The example
includes a complex model transformation, which generates a formal transition system description
from the selected BPEL process together with a traceability model, which stores the correspon-
dence information between the source and target models. Apart from transformation development,
the traceability model is used for aiding the verification and for supporting back-annotation by
projecting the verification results from the transition system level to the business process level.

The rest of the paper is structured as follows. Section 2 summarizes our running example of the
model checking of BPEL business process using the Symbolic Analysis Laboratory (SAL) [Sha00]
model checking framework. Section 3 presents the traceability aspects of the example and the
traceability model, including its generation and use. Then, Section 4 presents how generic and
domain-specific layout algorithms can be used to visualize traceability models, and demonstrates
them using an implementation in the VIATRA2 framework [V2]. Section 5 assesses the related
work and finally, Section 6 concludes our paper by evaluating the presented method and suggesting
possible future research directions.

2 Case study: Formal Verification of BPEL Processes

Business processes implemented in BPEL are often used to create business-to-business collabora-
tions and complex web services. Their quality is critical to the organization and any malfunction
may have a significant negative impact on financial aspects. To minimize the possibility of failures,
designers and analysts need powerful tools to guarantee the correctness of business workflows.
As the running example of our paper we use such a tool (BPEL2SAL) implemented based on the
method presented in [GHV10].

In order to verify BPEL processes, first the input process description is transformed into a
formal model (i.e. state transition systems, see Figure 1b), thus defining precise formal semantics
for BPEL. In the second stage, this transition system is projected into the language of SAL by code
generation executed using the VIATRA2 framework. The actual verification is then carried out by
model checking techniques using the SAL framework. Requirements against the business process
are captured as Linear Tempolar Logic (LTL) expressions (defined automatically for generic and
manually for process-specific requirements), while model checking results in a counter-example
(sequence of transitions) if the requirement is violated by the model. Finally, the back-annotation
of the verification results is provided by another transformation using the traceability information
generated during the first transformation [HRV10].

Proc. GraBaTs 2010 2 / 12

104

ECEASST

(a) Example BPEL process (b) BPEL Verification approach steps

Figure 1: Running Example

Example business process The input of the tool is a BPEL process therefore, for illustration
purposes, we will use the process shown in Figure 1a. The process represents a simple web
service responsible for checking the data format of the input and transforming it if required. The
Receive activity stores the incoming message from the requester in the input variable, then
the format check decides whether the data is well-formed. If it is the Copy activity copies the
data into the output variable, otherwise the Transform activity executes some manipulation
before writing the result into the output variable. Finally the Reply activity sends the data
from the output variable to the requester and the process finishes.

Traceability aspects In the BPEL2SAL tool all steps including model generation, model
checking and back-annotation require adequate traceability information concerning the relation
between the source (BPEL) and target (SAL) models (see the dashed arrows in Figure 1b: (a)
to simplify the model transformation by providing pointers to target model elements in different
phases of the structural transformation (b) in order to capture the requirements properly in LTL
expressions where SAL variables have to be used instead of BPEL elements, (c) in back-annotation
to derive the BPEL process execution from the SAL counter-example. Furthermore, during the
development of the transformations it was used for debugging purposes.

Throughout the paper, we will use this traceability information as a domain-specific model for
which a graph layout is defined using the presented algorithm. Although presented in the context
of the BPEL2SAL tool, these aspects can be identified in many other transformation problems as
general concerns [GLMD09]. The traceability information is (i) reused in the transformation, (ii)
examined for the verification or model-checking and (iii) used to drive back-annotation.

3 Static Traceability Models

The collected traceability information, which stores the correspondence between the structure of
models is called a static traceability model. Such models are used for various purposes, some of
which are presented through our running example.

Traceability Metamodel In order to store traceability information a third model called the
traceability model is created during transformation execution. The BPEL, SAL and traceability

3 / 12 Volume X (2010)

105

Visualization of Traceability Models with Domain-specific Layouting

models are stored as separate models. The traceability metamodel (illustrated on Figure 2) used
in the BPEL2SAL approach has similarities to those presented e.g. in [RÖV09, DKPF09].

Figure 2: Traceability metamodel

The core of the traceability metamodel is
the traceability record (TR), which represents
a correspondence relation between source and
target model elements. The record stores rela-
tions, which either point to source model ele-
ments (ref source relation) or target model
elements (ref target relation).

Although the TR could be used directly for
creating traceability model instances the def-
inition of subtypes (e.g. Receive2Identifier) provides a better solution for using the
traceability model (e.g. by simplifying pattern matching).

Traceability Use Cases: Reuse, Identification and Back-annotation The importance of
traceability can be illustrated on the running example (see Figure 1b) by pointing out three
scenarios how the traceability model supports the execution of the different steps of the method:
(a) reuse, (b) identification and (c) back-annotation. These steps are found in many transformation
use cases, while visualization is highly convenient for these scenarios as an assistance tool for
transformation development and verification.

(a) Reuse The SAL transition system has separate parts, which are generated at different phases
of the transformation. Thus the traceability model is used repeatedly to find the corresponding
variables to the relevant BPEL elements (e.g. find the SAL element corresponding to the BPEL
variable input, which is written during the execution of the Receive activity).

(b) Identification The requirements, which are validated against the business process, can be
best described using the source model (i.e. the BPEL process itself [XLW08]). However they
have to be specified as an LTL formula using the formalism of the target model (in this case, the
SAL transition system variables). The traceability model can be used to identify corresponding
SAL and BPEL elements (e.g. SAL variable to describe that Receive always finishes).

(c) Back-annotation The result of the model checking is a counter-example if the requirement
is violated by a sequence of transitions from the initial state leading to a violating state. However
the interpretation (or back-annotation) in the original BPEL process is far from trivial [HRV10].
The traceability model is used to find corresponding source elements for the variables in order to
derive the BPEL execution from the steps of the counter-example (e.g. the assignment stating that
the SAL variable corresponding to the Receive activity changed its value after a given transition
execution). Ideally, back-annotation itself may be automated, the visualization of traceability
models is still advantageous during its development.

4 Visualization of Traceability Models

Displaying generated traceability models gives an overview of the status of model transformation,
as ideally for every created target model element there should be one or more element in the
source model referenced by traceability records. However, not all the source model elements have
traceability records, while the visualization displays the nodes with records, as the subset with

Proc. GraBaTs 2010 4 / 12

106

ECEASST

traceability records is usually the significant part.
As the connections are their central element, traceability models can be meaningfully visualized

as a graph with the model elements as nodes and the traceability relations as arcs between them.
In this section our main contribution is to describe a domain-specific graph layout algorithm
created from generic and parameterizable algorithms to visualize such traceability models.

4.1 Visualization of Static Traceability Models

We examined various generic layout algorithms [KW01] to visualize static traceability models.
These algorithms evaluate aesthetic conditions to determine the layout of the graph, without any
specific information about the logical structure of the underlying model.

The simple grid layout displays nodes in rows and columns, but without additional information
the node positions had no connection with the structure, and the arcs were crossing both nodes
and each other, similar to layout in Figure 4a.

The radial layout, developed for the drawing of trees by positioning the nodes in concentric
circles, displayed the traceability model in two concentric circles: in the middle the traceability
records were displayed, while the outer circle contained both the source and target model elements,
mixed together. Although the traceability records are clearly identifiable, the created graph does
not reflect the structure of the model very well.

Spring layout, which defines the layout as minimal energy-state of a similar spring-system,
displayed the graph as isolated tuples (in most cases triplets) of related model elements. Thus
the corresponding elements are placed close to each other in an easily understandable way, but
random positioning of isolated tuples makes it hard to find typical problems.

Visualization Requirements The empirical evaluation of the generic graph layout algorithms
lead us to identifying the following requirements for a graph layout algorithm to visualize static
traceability models:

R1. The displayed nodes should not overlap, as it makes identification of nodes difficult.

R2. The crossings of the displayed arcs should be minimized, as this simple aesthetic criteria is
shown to affect human understanding greatly [Pur97].

R3. The corresponding source, target and traceability model elements should be placed close to
each other for emphasizing the relations between the model elements. By putting the related
elements close, requirement R2 becomes easier to fulfill, as it reduces the arc lengths.

R4. The visualization should clearly separate the source, target and traceability models. As the
distinction of the three models forms the basis of the underlying structure, we consider this
requirement critical for an understandable visualization.

R5. In order to provide a meaningful visualization during the transformation execution, it is
important to handle changes of the input models. The layout should change fast enough,
and should keep unchanged parts similar (as in maintaining the mental map [ELMS91]).

5 / 12 Volume X (2010)

107

Visualization of Traceability Models with Domain-specific Layouting

Grid Radial Spring
R1
R2
R3
R4
R5

Yes Partial Partial

No Yes No

No Partial Yes

No No No

No Yes Partial

Figure 3: Layouts and
Requirements

All listed generic layouts clearly violate the R4 requirement. In
addition to that the grid and spring layouts violate the R2 crossing re-
quirement, the radial layout the R3 closeness requirement (as traceability
records get far from the connected source and target elements).

Requirements R1, R2 and R3 are simple aesthetic properties of the
created graph visualization, so they can be fulfilled using generic graph
layout algorithms. On the other hand, as the source and target models
are symmetrically connected to the traceability record (as seen in the
traceability metamodel in Figure 2), the R4 separation requirement can only be fulfilled by a
model-dependent differentiating between the model elements.

For this reason we propose a domain-specific layout algorithm, that is created by adding
model-dependent customizations to existing generic layout algorithms.

4.2 Domain-specific Layout Algorithm for Static Traceability Models

In this paper we propose the use of domain-specific layouting by customizing generic and
parameterized algorithms: we try to give extra information based on the source, traceability and
target metamodels. The customization takes the following steps: (1) filtering the model, (2)
creating a custom ordering of the model elements and (3) adjusting the layout algorithm to satisfy
further visual constraints.

r_s

r_t

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

input:
tVariable

V2ID:
var2id

input:
tVariable

V2ID:
var2id

inputID:
identifier

sFinished:
identifier

inputID:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

Source model
(BPEL)

Target model
(SAL)

Traceability model

Legend

(a) Generic Grid

r_s

r_t

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

input:
tVariable

V2ID:
var2id

input:
tVariable

V2ID:
var2id

inputID:
identifier

sFinished:
identifier

inputID:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

Source model
(BPEL)

Target model
(SAL)

Traceability model

Legend

(b) Ordered Grid

r_s

r_t

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

input:
tVariable

V2ID:
var2id

input:
tVariable

V2ID:
var2id

inputID:
identifier

sFinished:
identifier

inputID:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

Source model
(BPEL)

Target model
(SAL)

Traceability model

Legend

r_s

r_t

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

input:
tVariable

V2ID:
var2id

input:
tVariable

V2ID:
var2id

inputID:
identifier

sFinished:
identifier

inputID:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

Source model
(BPEL)

Target model
(SAL)

Traceability model

Legend

(c) Column Adjustments

r_s

r_t

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

input:
tVariable

V2ID:
var2id

input:
tVariable

V2ID:
var2id

inputID:
identifier

sFinished:
identifier

inputID:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

Source model
(BPEL)

Target model
(SAL)

Traceability model

Legend

(d) Row Adjustments

r_s

r_t

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

input:
tVariable

V2ID:
var2id

input:
tVariable

V2ID:
var2id

inputID:
identifier

sFinished:
identifier

inputID:
identifier

receive:
tReceive

R2ID:
rec2id

recID:
identifier

process:
tProcess

S2ID:
scope2id

processID:
identifier

S2ID:
scope2id

sFinished:
identifier

input:
tVariable

V2ID:
var2id

inputID:
identifier

Source model
(BPEL)

Target model
(SAL)

Traceability model

Legend

Figure 4: Visualizing the Traceability Model

The different problems we addressed with the use of domain-specific layout algorithms for
traceability visualization are illustrated in Figure 4. In each figure we use a small subset of the
the traceability model: a receive, a process and an input node from the BPEL model,
their corresponding identifiers from the SAL model (SAL variables) and the traceability records
in-between. The different parts of the graph are colored differently, and the arc captions are
removed to maintain readability of the graphs.

Proc. GraBaTs 2010 6 / 12

108

ECEASST

Algorithm selection The selected layout algorithm depends on the properties of the visualized
model - this idea is hard to generalize. We have chosen a three-column grid layout algorithm,
as columns provide a clean separation of the different parts (thus fulfilling requirement R1).
Although the generic grid layout gives the worst visualization results without further information,
it can be extended to incorporate domain-specific data in a simpler way.

The generic grid layout does not distinguish between different parts of the model, instead it
places the nodes in an unpredictable way similar to the layout in Figure 4a. It is important to note,
that the generic layout algorithm does not utilize domain-specific filtering, however for the sake
of readability we omitted irrelevant elements from the figures, like the internal structure of the
source or target models.

Filtering The use of (meta)model-dependent filters helps to provide more relevant domain-
specific layout algorithm: by removing unnecessary entities or relations the resulting visualization
becomes more focused.

When displaying the traceability model, the intra-model relations of source or target models
are often unimportant. By filtering out these relations the resulting visualization is more relevant.
Removing irrelevant nodes or relations also reduces the number of crossing arcs (requirement R2).

The removed intra-model relations can either be evaluated using the existing model space
editors or a less strict filter should be applied. When applying such a filter, in order to keep the
visualization readable, the source, target and traceability models should be filtered similarly. The
development of such filters are planned in the future.

Filters can also be defined in the user interface: the user can decide which elements are relevant,
and others can be filtered out. This can be used as a kind of search functionality inside the
traceability model: it is possible to list only a type from the source or target model, and display its
corresponding nodes.

The filtering can happen on both the model and metamodel level: in the first case it is possible
to filter out some model elements (typically initiated by the user on the user interface), or entire
types (typically built-in filters, provided by the framework).

Ordering Custom ordering can be used to force an algorithm to place the nodes in a predefined
order. It is important to note, that some layout algorithms, such as the grid layout are dependent
on the ordering of nodes, but others, typically force-based algorithms are ordering-insensitive.

The grid layout implementation used for traceability visualization places the nodes in the order
it receives them. This means by creating an ordering that puts the corresponding nodes next
to each other in source-traceability-target order, the layout will place them next to each other.
Secondary ordering can be used to order the tuples by their relations.

Our solution ordered the items by the name of the traceability records (source and target models
are ordered by the names of their corresponding traceability nodes). The ordering ensures that
corresponding elements are placed close to each other, and can often be connected without arc
crossings (requirement R3 and R2 respectively).

This simple ordering works very well if there is one-to-one correspondence between the
different source, traceability and target model elements, otherwise elements get misplaced between
columns. As both S2ID elements in the grayed area of Figure 4b are connected to the same
process node, they should be placed into the second column, but the ordering misplaced them.

7 / 12 Volume X (2010)

109

Visualization of Traceability Models with Domain-specific Layouting

Further Visualization Constraints Domain-specific knowledge (e.g. the type of the nodes)
makes the layout algorithm capable of more efficient visualization. Filtering and ordering cannot
utilize all this information, so slight alterations of the layout algorithm might be needed.

For our traceability visualization the grid layout has been altered in two ways: (1) the algo-
rithm decides which model the model elements belong to (simple categorization based on the
metamodel), and places it into its corresponding column (requirement R4), and (2) grid cells are
left empty to align the corresponding model elements together (requirement R3). The second
adjustment is needed, as the first one only ensures that every element appears in the intended
column, but an element can get into a wrong row (as the input element in Figure 4c). This issue
is addressed by ensuring that for every source, traceability and target tuple a new row is started in
the layout (see Figure 4d).

Change handling Changes in the underlying model could be handled by simply reapplying the
layout algorithm, because the grid layout is simple to calculate (if the nodes are ordered correctly,
the execution time is linear to the number of nodes), and results in a layout similar to the original.

If new elements are added, typically a new row has to be appended to the visualized graph. The
previously discussed ordering might put this new row into the middle of the layout, thus shifting
the rows under the insertion point, but this can be avoided by altering the ordering method to
always add new nodes to the end of the list. It is important, that only entire new rows should be
handled this way, otherwise unwanted arc crossing could be introduced.

The deletion of elements often results in the deletion of a row, also causing row shifting.
If instead of deleting the elements they would be marked dirty (i.e. a signal representing the
deletion), the layout could be altered to leave their places empty.

We consider that even the basic version fulfills the change handling requirement R5, as typically
complete rows are shifted, so locally the mental map is maintained. By applying the mentioned
optimizations the changes can be emphasized.

Evaluation The visualization fulfills all requirements (R1–R5), and emphasizes the logical
structure of the transformation: the three models are clearly separated in columns, while the
connected elements are grouped in rows. A big drawback of our layout algorithm is the large
space consumption, especially vertically. This means, vertical scrolling is almost always needed,
but that is easy to understand, and does not affect the usability of our solution. It is also possible to
enhance the usability of the solution by more advanced filtering options (by increasing readability),
or some kind of searching option (to make the model navigable).

The created visualization can handle large models, we used the industrial size Finance case
study [AD07] for evaluation, whose BPEL implementation contains more than hundred elements.
Together with traceability and SAL elements, it can be visualized in less than a second.

4.3 Implementation and Usage Scenarios

VIATRA2 model space visualization The VIATRA2 framework organizes its models using a
model space [VP03] that allows a hierarchical modeling framework similar to the one provided
by the Eclipse Modeling Framework or ontologies.

The model elements can be either entities (graph nodes) or relations (graph edges). Entities rep-
resent the basic concepts of the modeling domain, while relations represent a general relationship

Proc. GraBaTs 2010 8 / 12

110

ECEASST

between model elements.
The VIATRA2 framework uses a containment-based editor to display and edit model spaces in

the user interface (similar to EMF tree editors), but in many cases this is not the most suitable
display for the user of the framework. For this reason, we created a model space visualization
component for VIATRA2, based on the Zest [Bul08] visualization framework. Zest is built up on
general purpose graph visualization techniques, which can be parameterized.

The visualization component is tightly integrated into the transformation development environ-
ment: it reacts to changes of the model space (occurring either during transformation execution
or model editing), and links back to the containment hierarchy-based editor. This integrated
approach helps in using both the containment-based editor and the graph layout together.

The implemented visualization component is depicted in Figure 5: next to the containment-
based editor the graph viewer shows the visualized traceability model.

Figure 5: The Visualization of an Erroneous Traceability Record

Usage Scenarios Our traceability visualization helps the manual uses of traceability, such as
the ones defined in Section 3, as the traceability links are displayed explicitly. The fact that the
visualization is integrated into the transformation IDE helps debugging transformation programs
in two ways: the detection of erroneous traceability links is easier.

It is possible to detect missing (or maybe misplaced) traceability records by looking for
model elements without connections in the visualization: as the visualization of Figure 5 shows,
the selected BPEL model element is not connected to a traceability record. This shows that
no traceability record has been created for the source element and suggests an error in the
transformation program (alternatively, a target element with no corresponding source model part
suggests incorrect traceability handling as well).

The dynamic update mechanism also gives an overview of the transformation status: before
the transformation is executed, only the source model is displayed, then as the transformation is
executed, the trace records and the relation targets are displayed as they are created.

Our visualization layout (and component) can be used to visualize similar traceability models,
which may use different metamodels. A more detailed evaluation is available on our website1.

1 http://home.mit.bme.hu/∼ujhelyiz/pub/traceabilityvisualization.html

9 / 12 Volume X (2010)

111

http://home.mit.bme.hu/~ujhelyiz/pub/traceabilityvisualization.html

Visualization of Traceability Models with Domain-specific Layouting

Visualization R1 R2 R3 R4 R5 Pros/Cons

Eclipse AM3

ModeLink

TraceViz

Transformation Chain
Visualization with
GEF3D

Domain-specific Graph
Layout (this work)

Model editors placed
next to each other

Yes N/A No Yes Yes + Easy editing

- Implicit traceability links (no arcs)

Display of structured
traceability links between
selected source and
target model elements

Yes N/A N/A Yes Part + Easy directed searches

- Traceability visualization is
restricted to selected elements

Graphical model editors
displayed and connected
within a 3D space

Yes Part Part Yes Yes + Reuse of existing graphical editors

+ Visible traceability links

- No automatic 3D layouting

Displaying the
traceability model with a
modified grid layout
algorithm

Yes Yes Yes Yes Yes + Visible traceability links

+ Transformation IDE integration

- Space consumption

Figure 6: Overview of the Traceability Visualization Solutions

5 Evaluation of Related Work

In this section a brief overview of various initiatives in the graph visualization field is provided
with special focus on model-specific visualization techniques and their use on traceability models.

Visualization Graph drawing is a critical area of information visualization. The graph drawing
community researched layout algorithms [KW01], such as different tree layouts or algorithms
based on physical analogies such as springs or energy levels. All these algorithms can be used as
the base of domain-specific layouts.

The publication information visualizer tool SHriMPBib [All03] uses domain-specific layout
algorithms by customizing the Jambalaya ontology visualization tool. Its method is similar to our
approach, as filters were defined together with the settings of visual and layout parameters, but
the actual design decisions were not published.

The DiaMeta editor generator framework allows specifying metamodel-dependent layout
algorithms [MM08]. The visualization is a constraint-based enhancement process: in every step it
tries to enhance the existing layout, then checks whether some metamodel-based layout constraints
hold. The approach is general and flexible, especially in terms of mental map preservation after
modifications, although the evaluation of the constraints could be resource-intensive.

Traceability Model Visualization We compare several traceability model visualization ap-
proaches in Figure 6. Both the Eclipse AM3 [JVB+10] and the ModeLink [MLi] projects ease the
manual editing of trace models by putting two or three EMF editors side by side, and making it
easy to add links between the editors. This approach works well for manual editing, but it is harder
to get an overview of the connection between the source and target models, as the connections are
not displayed graphically but by the setting of attributes. As no arcs are used, requirement R2 is
not applicable, while the corresponding nodes are not grouped together (requirement R3).

The TraceViz [MXP05] tool follows another approach: it displays a list of source and target
model elements, and displays the traceability links between the selected elements in a large central
area. This interface allows efficient, user-directed search, but is harder to visualize changes in
this way (as the changed elements might be hidden - partial support for requirement R5). As the
connections are not displayed, requirement R2 and R3 cannot be applied.

Proc. GraBaTs 2010 10 / 12

112

ECEASST

The transformation chain visualization of [PVSB08] also includes a three dimensional visual-
ization of traceability links. The main idea of the approach is to put the existing model editors in a
three dimensional space, and connect them with traceability links, on the other hand although the
layouting options of the existing editors are reused, the traceability links are simply connect the
corresponding nodes. This way requirement R2 and R3 are only partially solved, as they depend
on the positioning of the editors and the camera position.

Triple Graph Grammars (TGG) are introduced in [Sch95], which also defines a basic layout
that separates the three models but lacks further placement guidelines. TGGs are also used for
defining transformations in [GLMD09] include traceability information inherently, while the
VizMODLE tool supports the visualization of correspondence structures. However these do not
include specific layouting for traceability models, therefore these approaches are not evaluated
against the requirements.

6 Conclusion and Future Work

In case of complex model transformations (e.g. for automatic model analysis) debugging and
back-annotation of the transformation necessitates the visualization of traceability connections
between the source and target models in an intuitive, easy to understand way. Unfortunately
generic purpose graph layout algorithms frequently fail to properly display the underlying logical
structure of traceability models. To solve this problem we proposed a semi-automatic technique
with domain-specific layouting by customizing generic and parameterized layout algorithms, and
introduced our techniques on a complex case study.

The use of domain-specific layout algorithms seems a promising direction for visualizing
traceability models, although further research on automating possibilities is required. In the future
we plan to investigate how to identify the core structure of the source and target models, and use
this information to make the visualization more intuitive.

Bibliography
[AD07] M. Alessandrini, D. Dost. SENSORIA Deliverable D8.3.a: Finance Case Study: Requirements

modelling and analysis of selected scenarios. Technical report, S&N AG, August 2007.

[All03] M. M. Allen. Empirical Evaluation of a Visualization Tool for Knowledge Engineering. Master’s
thesis, University of Victoria, 2003.

[Bul08] I. Bull. Model Driven Visualization: Towards A Model Driven Engineering Approach For
Information Visualization. Ph.D. thesis, University of Victoria, BC, Canada, 2008.

[DKPF09] N. Drivalos, D. Kolovos, R. Paige, K. Fernandes. Engineering a DSL for Software Traceability.
In Software Language Engineering. Pp. 151–167. Springer Berlin / Heidelberg, 2009.

[ELMS91] P. Eades, W. Lai, K. Misue, K. Sugiyama. Preserving the mental map of a diagram. In
Proceedings of COMPUGRAPHICS. Volume 91, p. 2433. 1991.

[GHV10] L. Gönczy, Á. Hegedüs, D. Varró. Methodologies for Model-Driven Development and De-
ployment: an Overview. In Wirsing (ed.), Rigorous Software Engineering for Service-Oriented
Systems: Results of the SENSORIA project on Software Engineering for Service-Oriented Com-
puting. Springer-Verlag, 2010. To appear.

11 / 12 Volume X (2010)

113

Visualization of Traceability Models with Domain-specific Layouting

[GLMD09] E. Guerra, J. de Lara, A. Malizia, P. Dı́az. Supporting user-oriented analysis for multi-view
domain-specific visual languages. Information & Software Technology 51(4):769–784, 2009.

[HRV10] Á. Hegedüs, I. Ráth, D. Varró. Back-annotation of Simulation Traces with Change-Driven Model
Transformations. In Proceedings of the Eigth International Conference on Software Engineering
and Formal Methods. 2010. To appear.

[JVB+10] F. Jouault, B. Vanhooff, H. Bruneliere, G. Doux, Y. Berbers, J. Bezivin. Inter-DSL coordination
support by combining megamodeling and model weaving. In Proceedings of the 2010 ACM
Symposium on Applied Computing. Pp. 2011–2018. ACM, Sierre, Switzerland, 2010.

[KW01] M. Kaufmann, D. Wagner. Drawing Graphs. Lecture Notes in Computer Science Volume
2025/2001. Springer Berlin / Heidelberg, 2001.

[MLi] The ModeLink Project. http://www.eclipse.org/gmt/epsilon/doc/modelink/.

[MM08] S. Maier, M. Minas. A Generic Layout Algorithm for Meta-model Based Editors. In Applications
of Graph Transformations with Industrial Relevance. Volume Volume 5088/2008, pp. 66–81.
Springer Berlin / Heidelberg, Oct. 2008.

[MXP05] A. Marcus, X. Xie, D. Poshyvanyk. When and how to visualize traceability links? In Proceedings
of the 3rd international workshop on Traceability in emerging forms of software engineering.
Pp. 56–61. ACM, Long Beach, California, 2005.

[OAS07] OASIS. Web Services Business Process Execution Language Version 2.0 (OASIS Standard).
2007. ”http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html”.

[Pur97] H. Purchase. Which aesthetic has the greatest effect on human understanding? In Graph Drawing.
Lecture Notes in Computer Science, pp. 248–261. Springer Berlin / Heidelberg, 1997.

[PVSB08] J. von Pilgrim, B. Vanhooff, I. Schulz-Gerlach, Y. Berbers. Constructing and Visualizing
Transformation Chains. In Model Driven Architecture Foundations and Applications. Pp. 17–32.
2008.

[RÖV09] I. Ráth, A. Ökrös, D. Varró. Synchronization of Abstract and Concrete Syntax in Domain-specific
Modeling Languages. Journal of Software and Systems Modeling, 2009.

[Sch95] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In WG ’94: Pro-
ceedings of the 20th International Workshop on Graph-Theoretic Concepts in Computer Science.
Pp. 151–163. Springer-Verlag, London, UK, 1995.

[SEN05] SENSORIA (Software Engineering in Service-Oriented Overlay Computers) EU FP6 Project.
2005. http://sensoria-ist.eu.

[Sha00] N. Shankar. Symbolic Analysis of Transition Systems. In Gurevich et al. (eds.), ASM 2000.
LNCS 1912, pp. 287–302. Springer-Verlag, Monte Verità, Switzerland, 2000.

[V2] VIATRA2 Model Transformation Framework. http://www.eclipse.org/gmt/VIATRA2/.

[VP03] D. Varró, A. Pataricza. VPM: A visual, precise and multilevel metamodeling framework for
describing mathematical domains and UML. Journal of Software and Systems Modeling 2(3):187–
210, October 2003.

[XLW08] K. Xu, Y. Liu, C. Wu. BPSL Modeler – Visual Notation Language for Intuitive Business
Property Reasoning. Electron. Notes Theor. Comput. Sci. 211, 2008.

Proc. GraBaTs 2010 12 / 12

114

http://www.eclipse.org/gmt/epsilon/doc/modelink/
"http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html"
http://sensoria-ist.eu
http://www.eclipse.org/gmt/VIATRA2/

Electronic Communications of the EASST
Volume X (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Methods and Tools for the Verification of Finite-State and Infinite-State
Graph Transformation Systems

Barbara König

1 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

115

http://www.easst.org/eceasst/

ECEASST

Methods and Tools for the Verification of Finite-State and
Infinite-State Graph Transformation Systems

Barbara König

Abteilung für Informatik und Angewandte Kognitionswissenschaft,
Universität Duisburg-Essen, Germany

Abstract: In this talk we will review several tools and methods for the verification
of graph transformation systems. Especially we distinguish between techniques for
verifying finite-state and infinite-state graph transformation systems. Then, in the
second part of the talk, we will focus on partial-order methods, which can be used in
both scenarios. We will specifically describe the tool AUGUR, which uses approx-
imated unfoldings in order to over-approximate graph transformation systems with
Petri nets.

Keywords: graph transformation systems, verification tools, partial-order methods

1 / 1 Volume X (2010)

116

Electronic Communications of the EASST
Volume X (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Distributed Graph-Based State Space Generation

Stefan Blom and Gijs Kant and Arend Rensink

12 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

117

http://www.easst.org/eceasst/

ECEASST

Distributed Graph-Based State Space Generation

Stefan Blom and Gijs Kant and Arend Rensink∗

s.c.c.blom@utwente.nl kant@cs.utwente.nl rensink@cs.utwente.nl
Formal Methods and Tools Group
Department of Computer Science

University of Twente, The Netherlands

Abstract: LTSMIN provides a framework in which state space generation can
be distributed easily over many cores on a single compute node, as well as over
multiple compute nodes. The tool works on the basis of a vector representation of
the states; the individual cores are assigned the task of computing all successors of
states that are sent to them. In this paper we show how this framework can be applied
in the case where states are essentially graphs interpreted up to isomorphism, such as
the ones we have been studying for GROOVE. This involves developing a suitable
vector representation for a canonical form of those graphs. The canonical forms are
computed using a third tool called BLISS. We combined the three tools to form a
system for distributed state space generation based on graph grammars.

We show that the time performance of the resulting system scales well (i.e., close to
linear) with the number of cores. We also report surprising statistics on the memory
consumption, which imply that the vector representation used to store graphs in
LTSMIN is more compact than the representation used in GROOVE.

Keywords: Graph Transformation, Symmetry Reduction, State Space Generation,
Distributed Computing, GROOVE, LTSMIN

1 Introduction

For the last two years, the development in modern computer processors has been to put more cores
on a single processor, rather than to speed up individual cores. To benefit from this development,
it is therefore important to find ways to utilise the power of parallel processing. So far, there is no
general way to achieve this for arbitrary applications.

In the context of graph transformation, this topic has been investigated by Bergmann et al. in
[BRV09] for the tool VIATRA2. The core functionality of VIATRA2 is to compute a sequence of
transformations, controlled by a predefined set of rules, as fast as possible. The paper proposes
parallellisation of the matching algorithm.

In this paper, we address parallellisation of GROOVE [Ren04], which differs from other graph
transformation tools in that it aims at complete state space exploration for a given set of rules,
rather than computing a single sequence — where a state equates to a graph. One of the most
important aspects of GROOVE, furthermore, is that states are compared modulo isomorphism; that
is, two graphs are considered to represent the same state if they are isomorphic. Though checking

∗ any projects?

1 / 12 Volume X (2010)

118

mailto:s.c.c.blom@utwente.nl
mailto:kant@cs.utwente.nl
mailto:rensink@cs.utwente.nl

Distributed Graph-Based State Space Generation

graph isomorphism is thought to be non-polynomial, the resulting reduction in state space size
can more than make up for the cost of isomorphism checking; see, e.g., [CPR08].

At the core of our solution lies LTSMIN [BPW10], an existing framework specifically designed
to enable distributed state space exploration with support for multiple specification languages. To
use LTSMIN, an application has to:

1. Provide a serialisation of states in the form of fixed-length state vectors. State vectors are
minimised to so-called index vectors (see [BLPW08]), which can be efficiently stored and
transmitted.

2. Be able to generate all successors of a given source state, where both the source state and
the successor states are communicated in the form of such a state vector.

LTSMIN will then run parallel copies of this application on every available core; the copies
communicate using message passing, so that this works equally well with parallel and distributed
cores. This method of parallellisation is particularly promising for GROOVE because the time-
intensive step of isomorphism checking is done concurrently for many states.

In the case of GROOVE, Step 2 is present by default, but Step 1 is challenging. It is not enough
to “flatten” graphs to a vector representation of some kind: in order to reduce the state space
up to graph isomorphism, we have to make sure that the representative vector is the same for
isomorphic graphs. For this purpose, we can make use of an existing tool called BLISS [JK07],
which computes canonical graphs based on the principles developed in [McK81]. The LTSMIN

vector representing a graph is thus the “flattening” of its canonical form.

We have experimented with this combination of LTSMIN, GROOVE and BLISS. In this paper we
report two results:

• For larger cases, the time performance of the parallellised system scales well (though
not linearly) with the number of processors. On a single core the setup is a good deal
less efficient than GROOVE, but a system with eight or more cores easily outperforms the
stand-alone version of GROOVE.

• Given a good vectorisation of the canonical form, the memory performance of the combina-
tion of LTSMIN, GROOVE and BLISS is also a good deal better than that of the stand-alone
version. This is surprising given the fact that, in contrast to GROOVE, the data structures
that LTSMIN uses in its tree compression and central state store are not at all optimised
towards the storage of graphs. The gain is large enough to make us consider moving to the
compressed vector representation even in the stand-alone, sequential version.

We introduce GROOVE in Section 2 and the relevant features of the LTSMIN framework in
Section 3, especially the canonical graph vector representation. In Section 4 we report and analyze
the outcome of the experiments. Section 5 draws conclusions and discusses future work.

2 Graph-based state space generation

Graph transformation is a declarative formalism, based on a set of rules that are applied to graphs.
In the context of this paper, graphs are edge-labelled, with labels drawn from a global set Lab;

Proc. GraBaTs 2010 2 / 12

119

ECEASST

moreover, nodes are drawn either from a set of node identities Node, or from the set of primitive
data values Val= Bool∪ Int∪Real∪String.

Definition 1 (graph, isomorphism) A graph G is a tuple 〈V,E〉 where V ⊆ Node is a finite
set of nodes and E ⊆ V × Lab× (V ∪Val) is a finite set of edges. We use src(e), tgt(e) and
lab(e) to denoted the source, target and label of an edge e. The set of all graphs is denoted
Graph. Graphs G,H are isomorphic, denoted G∼= H, if there exists a bijection f : VG→VH such
that (f (v),a, f̄ (w)) ∈ EH if and only if (v,a,w) ∈ EG, where f̄ = f ∪ idVal. We sometimes write
f (G) = H.

There is no need to precisely define rules; we merely formalise their actions upon graphs. A
rule is an object r that can be applied to a host graph G if there exists a so-called match m for r in
G (not formalised here, either). The rule and the match together determine a transformation of G,
formally expressed by a derivation relation G−r,m−→ H, where H is called the target graph. This
derivation relation is well-defined and deterministic modulo isomorphism:

• G−r,m−→ H and G′ ∼= G implies G′ −r,m−→ H ′ for some H ′ ∼= H.

• G−r,m−→ H1 and G−r,m−→ H2 implies H1 ∼= H2.

Using these concepts we define the graph transition system generated by a set of rules.

Definition 2 (graph transition system) The graph transition system (GTS) for a set of rules R
and a start graph S is given by 〈Q,→,S〉, where→ is the derivation relation restricted to Q, and Q
is the smallest set of graphs such that (i) S ∈ Q, and (ii) H ∈ Q for all G ∈ Q, r ∈ R and G−r,m−→ H.

The GTS is a labelled transition system as used in many verification methods, in particular
model checking [BK09]. Unfortunately, the GTS can easily be infinite, and even when finite can
grow extremely large even for small start graphs — a phenomenon called state space explosion.
One way to combat state space explosion is through symmetry reduction (see, e.g., [CJEF96]).
In the case of graphs, symmetries show up as isomorphisms; the state space can be reduced by
collapsing all isomorphic states, or in other words, taking the quotient of the GTS under ∼=. The
following algorithm generates this quotient 〈Q,T,S〉 (where T is the set of transitions).

1 let Q := {S}, T := /0, F := {S} (F is the collection of fresh states)
2 while F 6= /0
3 do choose G ∈ F (which G is chosen depends on the structure of F)
4 let F := F \{G}
5 for G−r,m−→ H
6 do if ∃H ′ ∈ Q : H ′ ∼= H
7 then let H := H ′

8 else let Q := Q∪{H}, F := F ∪{H}
9 endif

10 let T := T ∪{(G,r,m,H)}
11 endfor
12 endwhile

3 / 12 Volume X (2010)

120

Distributed Graph-Based State Space Generation

The crux is in Line 6, which tests for membership up to isomorphism: given a graph H and a set of
graphs Q, find H ′ ∈ Q such that H ′ ∼= H. Testing H ′ ∼= H for given graphs H,H ′ is believed to be
non-polynomial in |H| (see [Wei02]), and clearly membership up to isomorphism generalises the
pairwise test. However, we have shown in [Ren07, CPR08] that the gain by symmetry reduction
can be huge, and hence can be worthwhile despite its complexity. We now discuss two ways to
implement membership modulo isomorphism.

Graph certificates. The current implementation of GROOVE, as reported in [Ren07], uses
certificates to obtain a data structure for Q allowing a membership-up-to-isomorphism test that
performs well in many practical cases.

A node certifier is a function nc : Graph→Node⇀ Nat, which for every graph G results in
a function ncG : VG→Nat with the property that ncG = ncH ◦ f for all isomorphisms f from
G to H. A graph certifier is a function gc : Graph→Nat such that G ∼= H implies gc(G) =
gc(H). An easy example of a node certifier is to count the number of incident edges (ncG : v 7→
|{e ∈ EG | src(e) = v∨ tgt(e) = v}| for all v ∈VG). Every node certifier nc gives rise to a graph
certifier gc : G 7→ ∑v∈VG

nc(v).
GROOVE currently implements Q as a map Nat→2Graph such that n 7→ {G ∈ Q | n = gc(G)}.

Finding H ′ ∈ Q such that H ′ ∼= H comes down to searching Q(gc(H)), which for a good graph
certifier gc is almost always either empty or a singleton set. Moreover, pairwise testing H ′ ∼= H
for the H ′ ∈ Q(gc(H)) is made easier by using a node certifier.

Canonical forms. One can take the idea of graph certifiers one step further by also requiring
that gc(G) = gc(H) implies G∼= H. This is the idea behind the concept of canonical forms.

A graph canoniser is a function can : Graph→Node⇀ Node, which for every graph G results
in an injective function canG : VG→Node such that G ∼= H if and only if canG(G) = canH(H).
(Note that, in combination with a hash function hash : Node→Nat, this gives rise to a node
certifier nc= hash◦can.) Q can then be implemented as a set of canonical form graphs. Obviously,
computing canonical forms is as complex as testing for isomorphism; nevertheless, in practice
the complexity often turns out to be bearable. In particular, the algorithm developed by McKay
[McK81] as implemented in the tools NAUTY [McK09] and BLISS [JK07] does well in practice.

We have used BLISS in our experimentation in the distributed setting. There is a discrepancy
in that BLISS uses node-labelled rather than edge-labelled graphs; however, our graphs can be
converted to BLISS graphs without loss of information, though with a slight blowup due to the
need to encode edge labels in some way. Another noteworthy property is that the canonical forms
produced by BLISS always map to an initial fragment of Nat; that is, canG(VG) = {0, . . . , |VG|−1}
for all graphs G. BLISS reorders the nodes such that for isomorphic graphs G and H for all v ∈ G
the same number is assigned to v and f (v) ∈ H for some isomorphism f (with H = f (G)).

3 The LTSMIN framework

LTSMIN is meant to be used as a module in a tool chain that enables state space generation
on parallel or distributed systems, consisting of many independent cores. The modular design
ensures that the framework can be used for a variety of formalisms. The communication between
LTSMIN and the application that uses it, hereafter called the user module, is through an interface

Proc. GraBaTs 2010 4 / 12

121

ECEASST

B
L

IS
S

G
R

O
O

V
E

B
L

IS
S

G
R

O
O

V
E

B
L

IS
S

G
R

O
O

V
E

LTSMIN LTSMIN LTSMIN

Figure 1: 3-core configuration of LTSMIN with GROOVE +BLISS as user module.

called PINS, for Partitioned Next-State function. We will briefly explain the underlying concepts.
To run an application on top of the LTSMIN framework, an LTSMIN client as well as a copy of

the user module is started up in parallel on every core. These copies communicate by message
passing, so that it does not matter (from the protocol view) whether cores are on a single machine
or distributed over different machines. State space exploration then proceeds as follows:

• LTSMIN defines a function that associates a fixed core with each state, on the basis of the
state’s vector representation. When a state is generated, it is sent to the associated core
for further processing. The exploration is kicked off by sending the initial state to the
appropriate core.

• Each core keeps a store of all states sent to it so far, remembering also whether the states
are closed (i.e., already fully explored) or fresh.

• Upon reception of a state, a core adds it to its state store, marking it as fresh if it was not
already in the store.

• Each core computes the successor of each fresh state, and sends the successors to their
associated cores. This computation is done by the user module.

An example configuration with GROOVE and BLISS is depicted schematically in Figure 1.

3.1 State vectors and tree compression

The central concept enabling the modularity of LTSMIN is the state vector. Every state has to
be presented as a vector 〈p1, . . . , pn〉 for fixed n. The nature of the elements pi actually does not
matter, as these are immediately mapped to table indices for each position. That is, for i = 1, . . . ,n
LTSMIN builds up an injective mapping ti : Pi→Nat, where Pi is the set of all values encountered
so far at position i and Nat is a finite fragment of natural numbers; e.g., that fragment which
can be represented in 32 bits. Every state vector 〈p1, . . . , pn〉 is then converted to an index vector
〈t1(p1), . . . , tn(pn)〉 ∈ Natn. The mappings ti are generated on the fly: once a value is encountered
for the first time (on position i) it is added to ti; from then on the same value on that position will
always be mapped to the same index. The function associating a core with each state is computed
as a hash on the index vector, modulo the number of available cores.

The tables (ti)1≤i≤n, together called the leaf database, are duplicated in the system. It is
essential that all workers use the same tables, but they are impossible to build beforehand, as
it is unknown which values will be encountered at each position. For this reason, the LTSMIN

framework also has the task of distributing the tables over the workers, which in turn means that
all the ti are replicated over all LTSMIN clients. On the other hand, the tables also need to be

5 / 12 Volume X (2010)

122

Distributed Graph-Based State Space Generation

known on the side of the user module, since this is where the coding of state vectors to and from
index vectors actually takes place. Thus, in a system with c cores, all ti are replicated 2c times.1

Index vectors are further compressed using so-called tree compression (see [BLPW08]): with-
out going into details, this comes down to repeatedly grouping neighbouring positions of the
index vector and building a new table of all combinations of values at those positions that are
found during exploration. All these tables together form what is called the tree database.

The success of the method crucially depends on finding a state vector representation that has
as few values at each vector position as possible; i.e., each of the Pi should be small. This does
not contradict a huge overall state space size: for maxi |Pi| = m, the number of states that can
potentially be represented is mn. In the worst case, for one or more i |Pi| approaches the total state
space size, and hence so does the size of the tree database; the advantage of this compression
method is then completely lost.

3.2 Serialising canonical form graphs

We will now describe the steps necessary to use GROOVE as a user module in the LTSMIN

framework. The main difficulty is to find a suitable state vector representation. This is entirely up
to the user module: LTSMIN gets to see the state vectors only after they have been produced, and
treats the values in the Pi as completely unstructured.

It is absolutely necessary that the state vectors uniquely represent states. This means that, if
we want to benefit from symmetry reduction, we have to put graphs into canonical form before
communicating them to LTSMIN. Moreover, as explained above, the vector representation should
ideally have only few possible values at each slot.

In Section 2 we have explained that the canonical form computed by BLISS essentially assigns
a sequence number from 0 to |V |−1 to each node of a graph G. This imposes a total ordering ≤
on V ; we will use~v = v0 · · ·vk to denote the ordered sequence of nodes in V . Furthermore, we use
the natural total orders on the primitive values Int, String, Bool and Real and we assume a total
order on Lab (for instance, the alphabetical ordering). This also gives rise to a lexicographical
ordering on edges. In the sequel, ord(X) for a set X with an implicit order will denote the ordered
vector of X-elements, and ~x �I for a sequence x ∈ X∗ and an index set I ⊆ {0, . . . , |~x|−1} will
denote the sequence of elements at positions I.

The vector ~pG representing G will consist of n slots, of which the first contains a sequence of
node colours (i.e., the primitive value in the case of value nodes or the set of self-edges for the
other nodes; this is also used in the conversion to coloured graphs, needed for the use of BLISS),
one for each node, in the order imposed by the canonical form; the second to fifth contain the sets
of primitive values from Val used as target nodes, seperated per primitive type; and the remaining
slots contain outgoing edges for the individual nodes. If k > n−5 (where k = |VG| and n = |~p|)
then nodes are “wrapped around”, e.g. for n = 12 slot p5 would be used for v0,v7,v14, This
way graphs can be encoded into a fixed size vector, even if the size of the graphs is not fixed.

1 This description is actually still slightly simplified with respect to the implementation: there the encoding of the
outgoing states may be different from that of the incoming ones; the former is then local to each core, and the LTSMIN

clients translate the local to the global encoding.

Proc. GraBaTs 2010 6 / 12

123

ECEASST

-10 B

”hi”A

A 3

ai

i

b

n

i a

0

1

23

4

5

p0 = {A} {A} {B} (Int,1) (Int,0) (String,0) list of nodes
p1 =−10 3 list of Ints
p2 = “hi” list of Strings
p3 = ε (the empty sequence) list of Bools
p4 = ε list of Reals
p5 = {(a,2),(b,1),(i,3)} /0 edges of 0 and 4
p6 = {(a,2),(i,3)} /0 edges of 1 and 5
p7 = {(i,4),(n,5)} edges of 2
p8 = /0 edges of 3

Figure 2: An example graph with |V | = 6, represented by a state vector with |~p| = 9. The
canonical node numbers are in italic. Node labels A, B are self-edges; oval nodes are data values.

Formally this is defined by

pi =

colorG(v0) · · ·colorG(vk) if i = 0
XG if i = 1+ j and X= (Int String Bool Real) � j
outG(w0) · · ·outG(wm) if i = 5+ j and ~w =~v �{l | l = j mod (n−5)}

where colorG(v) denotes the colour and outG(v) the outgoing edges of v, defined as follows:

colorG(v) =
{

self G(v) if v ∈ Node
(X, i) if v = XG �i,

self G(v) = {a | (v,a,v) ∈ EG},
XG = ord(X∩ tgt(EG)) for X= Int,String,Bool,Real,

outG(v) = {(a,canG(w)) | (v,a,w) ∈ EG,v 6= w}.

An example state vector is shown in Figure 2. As related above, this is translated to an index
vector together with a set of tables t0, . . . , tn, so that a value at position i which recurs in another
state vector at the same position is encoded by the same index. For instance, if the graph in
Figure 2 is modified by i := 3 in node 0, only slot 5 of the state and index vectors would change
(namely to {(a,2),(b,1),(i,4)} /0) and only t5 might have to be updated with this new value.

4 The experiments

We have carried out experiments based on three rule systems with varying characteristics.

le A leader election protocol. In this case there is a fixed number of nodes representing network
nodes and a varying number of nodes representing messages. The number of nodes is an
upper limit on the number of messages. This case study has been used for the GraBaTs
2009 tool contest (see http://is.tm.tue.nl/staff/pvgorp/events/grabats2009).

unflagged-platoon A protocol for forming car platoons. In this model there is always a fixed
number of nodes. The behaviour shows extensive symmetries; reduction modulo isomor-
phism shrinks the state space by many orders of magnitude. This case study has been used
for the Transformation Tool Contest 2010 (see http://planet-research20.org/ttc2010).

7 / 12 Volume X (2010)

124

http://is.tm.tue.nl/staff/pvgorp/events/grabats2009
http://planet-research20.org/ttc2010

Distributed Graph-Based State Space Generation

Table 1: Results for the largest start graphs where both GROOVE (sequential) and LTSMIN (1, 8
and 64 cores) were able to generate the state-space. The memory usage shown is the average per
core. The last column shows the number of elements in the global leaf database for LTSMIN.

Grammar/ States/ Time Mem
Start State Transitions Tool Cores (s) Speedup (MB) Leaf db
le 3.724.544 GROOVE 5.128 2.751
start-7p 16.956.727 LTSMIN 1 – – –

8 2.005 2,6 52
64 307 16,7 52 1.819

unflagged-platoon 1.580.449 GROOVE 1.016 1.259
start-10 10.200.436 LTSMIN 1 6.621 0,2 120

8 889 1,1 54
64 156 6,5 54 8.534

append 261.460 GROOVE 202 372
append-4-list-8 969.977 LTSMIN 1 3.285 0,1 99

8 352 0,6 76
64 92 2,2 70 69.147

append A model of list appenders that concurrently add a value to the same list. In this case the
number of nodes grows in each step. The maximal number of nodes equals the number of
appenders plus 1 times the number of elements in the list. There is hardly any nontrivial
isomorphism in the transition system.

The experiments have been performed on a cluster consisting of 8 compute nodes with 4 dual
Intel E5520 CPUs each and 24GB RAM, for a total of 8 cores per compute node and 64 cores in
total. GROOVE 4.0.1 has been used with a Sun Java 1.6.0 64-bit VM with a maximum of 2GB of
memory for each core. For computing canonical forms we used BLISS 0.50. We used LTSMIN 1.5,
with an added dataflow module to facilitate the communication between LTSMIN and GROOVE.
For all experiments, the combined system was given a time limit of 4 hours. The state vector size
for the first two cases was chosen such that n≥ k+5, hence no slot needs to encode the edges of
more than one node; however, this is not the case for the third case.

We have compared the performance of the distributed setting with the default, sequential
implementation of GROOVE (without computation of canonical forms), running on the same
machine but with a memory upper bound of 20GB. For the leader election with start state
start-7p a different machine with 60GB of memory has been used, because with 20GB of
memory the result could not be calculated.

Where there are no values in the table or figures of this section, either the time limit of 4 hours
was exceeded or there was not enough memory.

Global results. Table 1 shows some global results for the three cases, using the largest start
graphs for which the sequential setting could compute the entire state space. We can observe that
with 8 cores, the distributed setting starts to outperform the sequential, and also that the speedup

Proc. GraBaTs 2010 8 / 12

125

ECEASST

increase from 1 to 8 cores and from 8 to 64 cores is sizeable, though below the optimal value of 8.
Furthermore, the leaf database of the append rule system grows much larger than for the others,
despite the fact that the state space is much smaller. This is a consequence of the fact that the
graph size outgrows the vector size for this case.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

sta
rt-0

3

sta
rt-0

4

sta
rt-0

5

sta
rt-0

6

sta
rt-0

7

sta
rt-0

8

sta
rt-0

9

sta
rt-1

0

sta
rt-1

1

sta
rt-1

2

states

transitions

leaf db

(a) Number of states, transitions and leaf values.

 1

 10

 100

 1000

 10000

sta
rt-0

3

sta
rt-0

4

sta
rt-0

5

sta
rt-0

6

sta
rt-0

7

sta
rt-0

8

sta
rt-0

9

sta
rt-1

0

sta
rt-1

1

sta
rt-1

2

sta
rt-1

3

M
e

m
o

ry
 (

M
B

)

groove

1

8

64

(b) Memory usage for GROOVE and LTSMIN (per core).

 0.1

 1

 10

 100

 1000

 10000

 100000

sta
rt-0

3

sta
rt-0

4

sta
rt-0

5

sta
rt-0

6

sta
rt-0

7

sta
rt-0

8

sta
rt-0

9

sta
rt-1

0

sta
rt-1

1

sta
rt-1

2

sta
rt-1

3

T
im

e
 (

s
)

groove

1

8

16

32

64

(c) Execution time.

 0

 1

 2

 3

 4

 5

 6

 7

sta
rt-0

3

sta
rt-0

4

sta
rt-0

5

sta
rt-0

6

sta
rt-0

7

sta
rt-0

8

sta
rt-0

9

sta
rt-1

0

S
p
e
e
d
u
p

groove

1

8

16

32

64

(d) Speedup compared to GROOVE.

Figure 3: Figures for the car platooning case for different start states.

Time and memory distributions. For the car platooning case, more detailed results are shown
in Figures 3 and 4. First of all, Figure 2a shows that even though the size of the problem grows
exponentially, the number of elements of the leaf value database of LTSMIN does not. This is
also reflected by the per-core memory usage of LTSMIN (Figure 2b), which seems hardly to grow,
in contrast to the more than exponentially growing memory usage of GROOVE.

Figures 2c and 2d show the execution time respectively the speedup of LTSMIN with different
numbers of cores compared to GROOVE. The execution time of LTSMIN with one core is much
worse than GROOVE, but the speedup is growing fast. For the start states with 11 and 12 cars,
GROOVE cannot generate the state-space within 4 hours, but LTSMIN with 8 respectively 16 or
more cores can.

9 / 12 Volume X (2010)

126

Distributed Graph-Based State Space Generation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

g
ro

o
ve

8 1
6

2
4

3
2

4
0

4
8

5
6

6
4

T
im

e
 (

s
)

iso

enc/dec

send/recv

(a) Execution times for start-08.∗

 0

 200

 400

 600

 800

 1000

 1200

g
ro

o
ve

8 1
6

2
4

3
2

4
0

4
8

5
6

6
4

T
im

e
 (

s
)

iso

enc/dec

send/recv

(b) Execution times for start-10.∗

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

g
ro

o
ve

1 8 1
6

2
4

3
2

4
0

4
8

5
6

6
4

T
im

e
 (

s
)

iso

enc/dec

send/recv

(c) Execution times for start-12.

Legend
iso Computing canonical forms, includ-

ing the conversion of GROOVE to
BLISS and back

enc/dec Encoding and decoding of GROOVE
graphs into state vectors and back

send/recv Waiting for the next assignment
from LTSMIN

rest Matching in GROOVE

∗ LTSMIN with one core is left out, because it is more
then five times slower than the fastest after that.

Figure 4: Decomposed execution times for the car platooning case for different numbers of cores.

Execution time decomposition. Figure 4 shows how the execution time is built up. For smaller
start states, the communication between cores (labelled “send/recv” in the figure) is a major
factor in the computation time for LTSMIN, but for larger start states most of the time is spent on
computing canonical forms (isomorphism reduction). As the number of cores grows, however,
the communication again starts to play a larger relative rule — which is to be expected since this
is the only task that is not parallellised; indeed, the communication overhead grows more than
linearly with the number of cores.

Analysis. For lack of space we cannot include all results in this paper, but the trends for the leader
election and append rule systems are very similar to the ones reported above for car platooning.
Based on these results, we come to the following observations:

• The chosen serialisation of graphs works well in the reported cases. The total number of
values stored, the so called leaf database, is orders of magnitude smaller than the total
number of states. Indeed, the number of states grows exponentially with the problem size
for all three modelled systems, but the number of leaf nodes grows less than exponentially.

Proc. GraBaTs 2010 10 / 12

127

ECEASST

Although the canonical form calculation can renumber nodes in an unpredictable manner,
which in the worst case could blow up the number of leaf values, apparently the different
states are really a combinatorial result of the different parts of the vector. This is especially
true for the leader election and car platooning cases, where the number of nodes is a priori
bounded and the vector size can be chosen to accomodate this; in the append case, where
the state vector representation has to reuse slots for multiple nodes, the results are less
spectacular, though still quite good.

• The memory performance of the distributed LTSMIN solution is better than that of the
sequential GROOVE system. This is a direct consequence of the success of the serialisation,
but it deserves a separate mention. GROOVE uses dedicated data structures, which store
only the difference (delta) between successive graphs; nevertheless, the very general tree
compression algorithm of LTSMIN turns out to beat this hands down. This came as a big
surprise to us, and is reason to reconsider the data structures of GROOVE.

• The time performance of the distributed LTSMIN solution scales well with the number
of cores, especially for larger start graphs. The performance of a single core is quite bad
compared to GROOVE, taking in the order of 8-10 times as much time, but the distributed
system with 8 or more cores is faster. For the largest cases that GROOVE still can compute,
we get speedups up to 16 (for 64 cores); moreover, the LTSMIN solution continues to scale
well for larger start graphs, which GROOVE on its own cannot cope with at all any more.

• The canonical form computation in the LTSMIN-based system lasts as much as 5 times
longer than isomorphism checking in stand-alone GROOVE. As the certificate-based solution
of GROOVE uses the same underlying technique as BLISS’ canonical form computation
(namely, repeated partition refinement), there is no obvious reason for this performance
penalty; we hypothesize that it is a consequence of the required encoding of edge-labelled
GROOVE graphs as node-labelled BLISS graphs, which increases the graph size. It therefore
seems interesting to reimplement the BLISS algorithm for edge-labelled graphs. Given the
fact that isomorphism checking is a major fraction of the total time, we expect that this may
further improve the distributed performance.

5 Conclusion

We showed a successful way of parallellising graph-based state space generation, using a combi-
nation of three tools: GROOVE, BLISS and LTSMIN. A nontrivial step is the encoding of arbitrary
graphs into fixed-sized state vectors. We concluded that the resulting system scales well with the
number of cores, and has a surprisingly good memory performance — so good, in fact, that it
might be worth replacing the current GROOVE data structures. We also observed that a further
performance gain can probably be made by reimplementing the functionality of BLISS in order to
take advantage of the structure of edge-labelled graphs.

An interesting question raised in the course of this work is whether isomorphism checking
is a good idea at all. Omitting the canonical graph computation would ensure that rules have
only local effect on the state vector, giving rise to nontrivial (in)dependencies between transitions.

11 / 12 Volume X (2010)

128

Distributed Graph-Based State Space Generation

This in turn would allow more of the functionality of LTSMIN to be used, namely the symbolic
storage of states. Though there are examples where symmetry reduction has a huge payoff, the
same is true, to an even larger degree, for symbolic representations. This is a subject for future
investigation.

Bibliography

[BK09] C. Baier, J.-P. Katoen. Principles of Model Checking. MIT Press, 2009.

[BLPW08] S. C. C. Blom, B. Lisser, J. C. van de Pol, M. Weber. A Database Approach to
Distributed State Space Generation. In Cerná and Haverkort (eds.), Parallel and
Distributed Methods in verifiCation (PDMC). Electr. Notes Theor. Comput. Sci. 198,
pp. 17–32. Elsevier, 2008.

[BPW10] S. C. C. Blom, J. C. van de Pol, M. Weber. LTSMIN: Distributed and Symbolic
Reachability. In Computer-Aided Verification (CAV). LNCS 6174. Springer, 2010.
See http://fmt.cs.utwente.nl/tools/ltsmin/.

[BRV09] G. Bergmann, I. Ráth, D. Varró. Parallelization of Graph Transformation Based on
Incremental Pattern Matching. In Boronat and Heckel (eds.), Graph Transformation
and Visual Modeling Techniques (GT-VMT). Electr. Comm. of the EASST 18. 2009.

[CJEF96] E. M. Clarke, S. Jha, R. Enders, T. Filkorn. Exploiting Symmetry in Temporal Logic
Model Checking. Formal Methods in System Design 9(1/2):77–104, 1996.

[CPR08] P. Crouzen, J. C. van de Pol, A. Rensink. Applying Formal Methods to Gossiping
Networks with mCRL and Groove. ACM SIGMETRICS Performance Evaluation
Review 36(3):7–16, December 2008.

[JK07] T. Junttila, P. Kaski. Engineering an efficient canonical labeling tool for large and
sparse graphs. In 9th Workshop on Algorithm Engineering and Experiments. Pp. 135–
149. SIAM, 2007. See http://www.tcs.hut.fi/Software/bliss/.

[McK81] B. D. McKay. Practical graph isomorphism. Congressus Numerantium 30:45–87,
1981.

[McK09] B. D. McKay. NAUTY User’s Guide (Version 2.4). Nov. 2009. See http://cs.anu.edu.
au/∼bdm/nauty/nug.pdf.

[Ren04] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In Pfaltz et al.
(eds.), Applications of Graph Transformations with Industrial Relevance (AGTIVE).
LNCS 3062, pp. 479–485. Springer Verlag, 2004.

[Ren07] A. Rensink. Isomorphism Checking in GROOVE. In Zündorf and Varró (eds.), Graph-
Based Tools (GraBaTs). Electr. Comm. of the EASST 1. September 2007.

[Wei02] E. W. Weisstein. Isomorphic Graphs. From MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/IsomorphicGraphs.html, 2002.

Proc. GraBaTs 2010 12 / 12

129

http://fmt.cs.utwente.nl/tools/ltsmin/
http://www.tcs.hut.fi/Software/bliss/
http://cs.anu.edu.au/~bdm/nauty/nug.pdf
http://cs.anu.edu.au/~bdm/nauty/nug.pdf
http://mathworld.wolfram.com/IsomorphicGraphs.html

Electronic Communications of the EASST
Volume X (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Applying Offline Verification of Model Transformations to Mobile
Social Networks

Márk Asztalos, Péter Ekler, László Lengyel, Tihamér Levendovszky

12 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

130

http://www.easst.org/eceasst/

ECEASST

Applying Offline Verification of Model Transformations to
Mobile Social Networks

Márk Asztalos, Péter Ekler, László Lengyel, Tihamér Levendovszky

Budapest University of Technology and Economics
Department of Automation and Applied Informatics
{asztalos, ekler.peter, lengyel, tihamer}@aut.bme.hu

Abstract: Offline verification of model processing programs has become a
fundamental issue in model-based software development. Offline means that
only the definitions of the program and the languages of the models to be
transformed are analyzed, therefore, the results are independent of the con-
crete input models and will hold for every possible model. Obviously, the
offline analysis is very complex, but it must be performed only once. There
are offline analysis results that analyze the formal background or present
experimental results, but we believe that formal, automated model transfor-
mation verification is still in an initial phase and needs to be improved by
providing more general solutions. In previous work, we have provided fun-
damental formal and algorithmic background of an offline, (semi-)automated
verification approach. This work concludes these components and put them
together to introduce the implementation of a verification system fully in-
tegrated into a modeling and model transformation framework. We believe
that the strong points of our approach is its usability, its implementation in
an existing tool, and its extendibility, which are demonstrated on a case study
in the application domain of mobile centric social networks. Our results show
that the verification of graph rewriting-based model transformations can be
largely automated.
Keywords: model transformation, automated verification, offline analysis

1 Introduction

In model-based software engineering, developers use programs to process models in a
repeatable and automated way. With the increasing need of reliable systems, the verifi-
cation of such model processing programs has become a fundamental issue. Verification
means determining the correctness of the program in the sense that the output satisfies
certain functional and non-functional conditions.

Graph rewriting-based model transformation is a frequently used model processing
technique, which is well suited to describe several model processing scenarios. We analyze
graph rewriting-based model transformations that are based on the formal background
graph transformation systems as defined in [EEPT06]. A graph transformation system
is defined by a set of rewriting rules (productions), the applications of rules are the
elementary operations on graphs. In our terminology, a model transformation is the

1 / 12 Volume X (2010)

131

Applying Offline Verification of Model Transformations to Mobile Social Networks

definition of a model processing program specified by a a set of rewriting rules (based
on the double-pushout approach [EEPT06]) and an additional control flow graph that
explicitly defines the execution order of the rules. In this control flow, branches and
loops may be defined.

In this work, we concentrate on the automated, formal, offline verification of model
transformations. A verification technique is called offline if only the definition of the
transformation and the specification of the languages that describe the models to be
transformed are used during the analysis process. The results of the offline analysis are
general in the sense that they are independent from the concrete input models. Moreover,
the analysis needs to be performed only once. The disadvantage of the offline approach
is the increased complexity of the analysis.

Many published examples can be found for the verification of individual model trans-
formations, however, these methods usually lack generalization possibilities, since the
analysis is performed manually or the methods can be applied only to a certain trans-
formation class or to the analysis of only a certain type of property. Therefore, there
is an increasing need for automated verification methods and tools. There are few re-
sults [Pen09, Ore08, Sch09] related to offline analysis. These analyze the formal back-
ground or present experimental results, but we believe that the area of formal, automated
model transformation verification is still in an initial phase and needs to be improved.
For a more detailed discussion on related work, see Section 5.

In this paper, we present the concept of an automated verification framework imple-
mented in Visual Modeling and Transformation System (VMTS) [Vis]. We have defined
a first-order logic-based language (Model Condition Description Language [ALL09b],
detailed in Section 3.1), which is capable of expressing most of the properties that are
important to be verified. Our system is capable of analyzing model transformations im-
plemented in VMTS and examine the properties described by our language. The result
of the analysis can be a proof, a refutation, or that the property cannot be decided.

In previous work [AML10] [ALL09b] [ALL09a] [ALL10], we have described individual
components of our verification approach. In this paper, we introduce each of these
components shortly to set the grounds for our discussion, then we present the architecture
of our implemented verification system. We demonstrate the operation of our system on
a real-world case study of refactoring social network models.

The structure of this paper is organized as follows. Section 2 presents the application
domain of mobile-centric social networks with its metamodel and introduces a refactoring
model transformation. In Section 3, components of our approach are detailed. Section 4
outlines our implemented framework and the verification of the refactoring model trans-
formation. Section 5 contains discussion on related work and Section 6 concludes this
paper.

2 Case Study
Support of mobile devices is generally marginal in most social networks, however, the
phone book in our mobile phone is a small part of a social network because every contact
has some kind of relationship to us. Given an implementation that allows us to upload
as well as download our contacts to and from the social networking application, we can

Proc. GraBaTs 2010 2 / 12

132

ECEASST

completely keep our contacts synchronized. In this paper, we refer to this solution as a
phone book-centric social network.

Phonebookmark [EIA09, EL10] is a phone book-centric social network implementation
by Nokia Siemens Networks. We took part in the implementation and before the public
introduction it was available for a group of general users from April to December of 2008.
It had 420 registered members with more than 72000 private contacts. In the following,
we present the model-based representation of Phonebookmark networks in VMTS. We
also show a model transformation used for the refactoring of Phonebookmark models. In
this paper, we demonstrate the operation of our verification system in the application
domain of phone book-centric social networks.

2.1 Metamodeling Central Social Network

Visual Modeling and Transformation System (VMTS) [Vis] is a metamodeling and model
transformation system, we can create models not only for predefined modeling languages,
but we can define new modeling languages as well. In VMTS, a domain-specific modeling
environment has been created for the Phonebookmark social network, the metamodel is
presented in Figure 1a.

(a) Phonebookmark Metamodel (b) Sample Phonebookmark Instance Model

Figure 1: Phonebookmark Application Domain in VMTS

A member is a user of the social network, a phone is a mobile device of a member that
can contain phone book entries, a contact corresponds to a phone book entry of a phone.
Relations between the entities have been defined as follows: each member can own several
phones (PhoneOwnerConnection), each phone can contain several contacts (ContactCon-
tainment). A contact can be connected to a member with a CustomizedConnection or
a SimilarityConnection edge. A ContactContainment, or shortly customization edge,
means that the current entry corresponds to the member of the social network. When-
ever the owner member of the entry connects to the social network, the data can be
synchronized. A SimilarityConnection, or shortly similarity edge, between a member
and a contact, denotes that a special similarity detecting algorithm has found similarities

3 / 12 Volume X (2010)

133

Applying Offline Verification of Model Transformations to Mobile Social Networks

between their data so the user has to decide whether to accept this relation and convert
it into a customization edge or reject it. For this purpose, ApprovalState attribute has
been defined for similarity edges, whose value can be approved, rejected, or, the default
value, ignored, which means that the user has not decided yet.

In VMTS, the domain-specific environment includes the metamodel and a concrete
syntax extension for the instance models. A sample instance model is presented in
Figure 1b. The entities can be easily differentiated by their icons. Similarity edges are
denoted by red, customization edges by goldenrod colors.

2.2 Similarity Handling Transformation

In VMTS, the graph rewriting-based transformations are defined with the use of two
modeling languages: the Visual Control Flow Language (VCFL) and the Visual Trans-
formation Definition Language (VTDL) [AAL+09]. The activity diagram-like VCFL
models controls the execution order of the rewriting rules, while the rewriting rules are
described with VTDL models. These VTDL models define the (left hand side, LHS)
pattern to be found and the replacement (right hand side, RHS) pattern of a rule.

Phonebookmark provides a semi-automatic similarity detecting and resolving mecha-
nism, which detects similarities between phone book contacts and the members of the
network. Similarity means that the algorithm suggest to the user that the contact and
the member represent the same person. In this case, a similarity edge is created between
the contact and the appropriate member.

Our model transformation (similarity handling transformation) program processes a
Phonebookmark model. The user starts it manually after finishing the classification of
the similarity edges, where classification means setting the value of the ApprovalState
attribute. The transformation processes the classified similarity edges as follows: ap-
proved edges are converted into customization edges and rejected edges are removed.
Our algorithm is defined in VMTS, and C# code is generated from the definition, since
the refactoring needs to be executed on the mobile devices.

Before presenting the model transformation, we need to introduce the fundamental
concepts of our approach related to the transformation definitions. (i) Firstly, we as-
sume that formally, each model transformation processes one model, which is modified
during the execution. It means that the output of an execution is the modified input
model. However, it is not a restriction on the generality of the model transformation,
since assuming that we have multiple input and multiple output models, we can always
compose their union and treat them as a single model. (ii) Secondly, we need to explain
the concept of the control flow graph of the transformations. Start node and end nodes
are used to mark the starting point and possible end points of the transformations. We
call an application of a rule successful if a match has been found, otherwise unsuccess-
ful, this property can be used in the control flow to define branches. To each flow edge
the value success, failure, or dontcare is assigned. Success means that the flow edge is
followed if the application of the source rule was successful. Failure means that the flow
edge is followed if the application of the source step was unsuccessful. Dontcare means
that the edge is followed in both cases.

Proc. GraBaTs 2010 4 / 12

134

ECEASST

The control flow graph of the transformation, as implemented in VMTS, is presented
in Figure 2a. The dashed, gray control flow edges are followed, if the application of the
source rules was unsuccessful, which happens when no matches of the left hand side can
be found. The solid, gray edges are followed if the application of the previous rule was
successful, while solid black edges are followed always. Rules with a circle in the top
right bottom are executed exhaustively, which means that the rule is applied repeatedly,
until it cannot be applied any more. For a more detailed specification of our model
transformation language, see [AM09]. Figure 2 also contains the definition of the rules
of the transformation. Here, we use a concrete syntax-based formal representation of
each rule with specifying the left hand side (LHS) and right hand side (RHS) of each
of them. Recall that the application of rewriting rules is based on the double pushout
approach.

(a) Transformation Control Flow (b) Rule rc1 (c) Rule rc2

(d) Rule rc3 (e) Rule rc4 (f) Rule rc5 (g) Rule rc6

Figure 2: Similarity Refactoring Transformation

Informally, the implemented transformation works as follows: (i) rc1 removes all re-
jected similarity edges. (ii) If there is a contact that has two approved similarity edges,
rc2 marks the contact. Marking means setting an attribute of the entity. (iii) rc3 changes
the approval state of an approved similarity edge of a marked node to ignored. This rule
is reached only when rc2 has been applied successfully. (iv) rc4 removes the mark from
a marked node. (v) rc5 replaces all approved similarity edges with customization edges.
This rule is reached only when rc2 cannot be applied. (vi) rc6 removes all similarity
edges which comes from a member that already has a customization edge.

This model transformation will be used to demonstrate the verification system pre-
sented in the following section. In the following, two edges are called parallel if they
have the same source node. The requirements of this transformation are as follows: (i)
Inconsistent states, when the model has parallel approved edges, should be identified. In
this case, all parallel approved edges should be modified to be ignored. (ii) All rejected
similarity edges should be deleted. (iii) In a consistent state, all approved similarity edge
should be transformed to a customization edge. (iv) Whenever a customization edge is
present, all similarity edges that are parallel with it should be deleted.

5 / 12 Volume X (2010)

135

Applying Offline Verification of Model Transformations to Mobile Social Networks

3 Components of a verification framework
In this section, we summarize the fundamental components of our verification approach
that have been presented in [AML10, ALL09b, ALL09a, ALL10].

We start with the concept of patterns of models, which are used in the formalisms
presented later in this section. Informally, a pattern P defines a submodel, more precisely,
the elements of the submodel (i.e. nodes and edges). A pattern does not specify the values
of the attributes, but may contain attribute constraints that states something about the
attributes. For example, the LHS of rule rc1 defines a model pattern, which consists of
two nodes and an edge between them. One of the nodes is of type Contact, the other is
of type Member, and the edge is a SimilarityConnection. Moreover, the pattern specifies
the ApprovalState property of the edge has the value rejected. In this paper, we will use
the concrete syntax of the application domain to define model patterns shortly as we did
in the presentation of the rewriting rules.

3.1 Model Condition Description Language

The first component of our verification approach is the Model Condition Description Lan-
guage (MCDL) that is a formal language for writing first-order logic-based expressions
(formulae). These logical expressions can describe several properties of models. In the
following, MCDL is presented informally, based on our previous work [ALL09b, ALL10].

With the simplest expression of MCDL, we can define that a match of a certain pattern
must exist in the model: ∃ P is satisfied by a model M if an isomorphic occurrence of P
can be found in M such that all attribute constraints in P are satisfied. We can combine
expressions of MCDL with the standard logical operators ¬, ∧, and ∨. In this paper,
formulae of MCDL are denoted by Greek letters.

For example, the condition c = ∃ ∧@ indicates that there exists a member in
the model, but there are no contacts (@ is the abbreviated form of ¬∃). Given a model
M , M satisfies c if and only if there is at least one member element in the model, but
there are no contact elements. We can give attribute constraints in the patterns, e.g. in
the left hand side of rule rc1, we specified that the similarity edge must be rejected, i.e.
its ApprovalState attribute must have the value rejected.

MCDL has already been extended to make it possible to specify more complex condi-
tions with patterns, e.g. that for each member element of a model, at least one phone has
to be connected, but their complete presentation would exceed the limits of this paper.
In our case study, we will only use the first type of expressions during the verification.
VMTS provides a user interface to define formulae of MCDL.

3.2 Model Condition Inference Logic

Given two MCDL expressions φ1, φ2, we may want to prove or refute the logical impli-
cation φ1 ⇒ φ2. Model Condition Inference Logic (MCIL) is an inference logic defined
over expressions of MCDL. An implementation exists in VMTS, and deduction rules for
the calculus have been proposed in [ALL10]. The following illustrative examples show
two possible inferences: ∃ ⇒ ∃ , @ ⇒ @ .

Given two arbitrary expressions φ1 and φ2, MCIL analyzes the logical implication φ1 ⇒

Proc. GraBaTs 2010 6 / 12

136

ECEASST

φ2. The result of the analysis can the proof described by the steps of the logical reasoning,
or a refutation that is the proof of φ1 ⇒ ¬φ2. However, if not enough information is
provided neither the proof, nor the refutation can be provided. In this case the result of
the analysis is unknown. The most important property of MCIL is that it is designed in
a way that the reasoning algorithm terminates even when the satisfiability of a property
is not decidable, therefore, it can be applied in real-world analysis tools as well.

MCIL is used during the verification of model transformations. For example, assume
that we can prove that φ1 is true for each output model of the transformation, and let
φ2 be a verifiable property. In this case, if the implication φ1 ⇒ φ2 can be proved, the
property is verified. If the implication can be refuted, it is proved that no output models
will satisfy φ2.

3.3 Propagation of Formulae

Propagation of an MCDL formula φin through a rewriting rule r means the derivation of
formula φout by the definition of the rule, such that if φin is true for an arbitrary model
M and M is modified by rule r, then φout is the formula that is satisfied by the modified
model. For example, let φ1 and φ2 be as follows:

ϕ1 = @ , and ϕ2 = @

By the definition of rc5 (Figure 2f), it can be proved that, if given a model M that
satisfies ϕ1 and M is modified by executing rule rc5, the resulting model will also satisfy
ϕ1 (since rc5 does not create rejected similarities). Moreover, we can infer that the
modified model must satisfy ϕ2 independently of the fact that M satisfied ϕ2 before the
application of the rule (because rc5 is applied exhaustively).

We have already proposed formal propagation methods for rewriting rules in [ALL10,
ALL09a]. We have also given algorithms for the propagation of formulae of MCDL
through complex control flows of model transformations, which is based on the propaga-
tion of formulae through individual rules and the traversing of the control flow graphs. In
this case, given the initial conditions that must be satisfied by any possible input models
of the transformations, the propagated formula is the condition that is satisfied by any
possible output model of the whole transformation. Moreover, the discovery of formulae
on the edges of the control flow graph is also the goal of the algorithms. This means
that the formulae that must be true for the model under transformation are computed
in different locations of the control flow graph, these locations are the control flow edges.
Therefore, after the discovery algorithm for each control flow edge e, an MCDL formula
φe will be assigned. Given the formulae φfinal

1 ,φfinal
2 , . . .φfinal

j on all incoming edges of
all end nodes, we can say that the formula φfinal = φfinal

1 ∨ . . .φfinal
j will be satisfied by

all possible transformed model of the transformation.
What are the benefits of the discovery algorithm outlined above? (i) As mentioned

in Section 3.2, given a verifiable condition φver specified as an MCDL formula, the
verification is the proof of the expression φfinal ⇒ φver. (ii) Formulae are discovered on
all edges of the control flow graph, this can help to localize problematic points of the

7 / 12 Volume X (2010)

137

Applying Offline Verification of Model Transformations to Mobile Social Networks

transformations during the testing phase. We will show examples for the propagation in
Section 4.1, where the transformation handling the similarity is verified.

4 Automated Verification Framework

The verification framework for model transformations has been implemented in VMTS.
The main elements of the verification process and the components of the framework
are presented in Figure 3. Rounded rectangles are artifacts that are created by the
developers or by the verification framework automatically, while not rounded rectangles
are the components of the verification system implemented in VMTS.

Figure 3: Components of the Verification Framework

The phases of a model-based development (i.e. the implementation of transformations
and the verification process), and the roles of the components are as follows:

1. Domain experts define the metamodel of the modeled application domains.
2. Model transformation developers implement a model transformation.
3. From these artifacts, VMTS Transformation Translator automatically generates

the formal specification of the model transformation. This specification is a formal,
declarative description, which makes the further automated analysis of the control
flow and rules possible.

4. The Discovery Algorithm traverses the specification of the transformation, propa-
gates the initial conditions, discovers the formulae on all edges, and generates the
final formula (φfinal).

5. MCIL is used to prove or refute the implication φfinal ⇒ φver, where φver is the
verifiable formula provided by the developer or the tester of the transformation.
The Inference Logic component of VMTS is the implementation of the MCIL. The
result of the reasoning can be the proof, or the refutation of the implication, or
that the algorithm cannot decide.

4.1 Verification of Model Transformation Handling Similarity

In this section, we present the verification of the similarity handling transformation and
demonstrate the operation of the discovery algorithm. Primarily, we provide initial con-
ditions. Informally, we assume that each input model satisfies the following conditions:
(i1) there cannot exist parallel customization edges, (i2) parallel similarity edges can-
not have the same target, and (i3) initially all contacts is not marked (a contact can
be marked or not marked, which is expressed by the attribute Processed). The initial
conditions are formally specified in Table 1, let φinit = φinit

1 ∧φinit
2 ∧φinit

3 .
For the verification, we need to define the verifiable properties, which are as follows (the

properties are formalized in Table 2): (v1) After the application of the transformation,

Proc. GraBaTs 2010 8 / 12

138

ECEASST

Table 1: Initial Conditions

(i1) φinit
1 = @ ∧@ (i2) φinit

2 = @ (i3) φinit
3 = @

no approved similarity edge should be present in the model. Each approved edge should
be transformed to a customization edge, or should be deleted if there are more than
one approved similarity edge from the same contact. (v2) After the application of the
transformation, no rejected similarity edge should be present in the model. All rejected
similarity edges should be deleted. (v3) After the application of the transformation,
it is forbidden that a contact has a similarity and a customization edge at a time. In
this case, the similarity edge should have been deleted. (v4) After the application of
the transformation, it is forbidden that a contact has two customization edge at a time,
provided that before that transformation started this pattern was also forbidden. This
would result an inconsistent state.

Table 2: Verifiable Properties

(v1) @ (v2) @ (v3) @ (v4) @

Given the initial conditions, the discovery algorithm traverses the control flow of the
transformation and derives the formulae, which means that for each flow edge a formula
is assigned. Table 3 shows the discovered expressions. After the initial conditions are
provided and the discovery algorithm is executed, the final formula can be derived, which
is φfinal = φe8 in our case. MCIL can derive all four verifiable properties from the final
formula, therefore, all properties can be verified. VMTS also provides the derivation
steps of the inference, but its presentation would exceed the limits of this paper.
5 Related Work
In this section, we discuss work related to our verification method. The offline analysis
of model transformations have been performed in several cases [Var02, BH07, BBG+06],
but the presented approaches can usually be applied to only certain (class of) transfor-
mations, or only for certain (type of) properties, hence, usually cannot be generalized.
[ABK07] presents an approach similar to ours: UML metamodels along with embedded
well-formedness rules (typically OCL constraints) can be translated to the formalism
Alloy. Then the Alloy Analyzer can conduct fully automated analysis of the transforma-
tion. The difference between our approach and the one presented in the paper is that
the Alloy Analyzer uses a simulation that generates a random instance model of the
input metamodel, then analyzes the behavior of the transformation by transforming this
instance model.

Formal methods that can be composed in a complex framework for the analysis of

9 / 12 Volume X (2010)

139

Applying Offline Verification of Model Transformations to Mobile Social Networks

Table 3: Results of the Discovery Algorithm

Edge Discovered Formula
e1 φe1 = φinit

e2 φe2 = φinit ∧@

e3 φe3 = φinit
1 ∧φinit

2 ∧@ ∧∃

e4 φe4 = φinit
1 ∧φinit

2 ∧@ ∧@ ∧∃

e5 φe5 = φinit
1 ∧φinit

2 ∧@ ∧φinit
3 ∧∃

e6 φe6 = φinit ∧@ ∧@

e7 φe7 = φe6 ∧@

e8 φe8 = φe7 ∧@

certain properties of model transformations have been introduced. [Pen09] presents a
formalism that is similar to our concept of conditions on models. Nested conditions that
are based on traditional application conditions of graph rewriting systems for high-level
structures are formalized. Additionally, a sound and complete satisfiability algorithm
for graph conditions is investigated and a fragment of conditions is identified, for which
the algorithm decides. However, this solution does not take attribute constraints into
account. [Ore08] also introduces formalization for attributed graph constraints. The
new notion of attributed constraint combines a (standard) graph constraint with a for-
mula describing a condition on the attributes of the graphs involved in the constraint.
Moreover, [Ore08] also presents inference rules for the classes of constraints considered,
showing their soundness and completeness. In [Sch09], the authors introduce a formalism
to describe a model transformation in a declarative way, hereby, verification of soundness
conditions can be performed using an interactive theorem prover. The propagation of
conditions through individual rewriting rules is investigated in [Roz97] and [EEPT06],

Proc. GraBaTs 2010 10 / 12

140

ECEASST

where (negative) application conditions on graph productions and their propagation are
analyzed. The work does not take attribute constraints into account either.

6 Conclusions
In this paper, we have outlined an offline, formal, automated framework for the veri-
fication of graph rewriting-based model transformations. We have presented how the
components of the framework work together in an implementation of our verification
methods in a modeling tool, VMTS. We have demonstrated the usability of our methods
on a case study of the verification of refactoring mobile-centric social network models.

We believe that the strong point of our approach is its formal background that was
developed with considering the possible implementation kept in mind. Moreover, our
approach is not only theoretical: it is completely implemented in a real-world modeling
and model transformation framework VMTS.

In future work, we would like to complete the formalism behind each of presented
components of our solution, and present more complex case studies

Acknowledgements: This paper was supported by the János Bolyai Research Schol-
arship of the Hungarian Academy of Sciences.

This work is connected to the scientific program of the ”Development of quality-
oriented and harmonized R+D+I strategy and functional model at BME” project. This
project is supported by the New Hungary Development Plan (Project ID: TÁMOP-
4.2.1/B-09/1/KMR-2010-0002).

Bibliography

[AAL+09] L. Angyal, M. Asztalos, L. Lengyel, T. Levendovszky, I. Madari, G. Mezei,
T. Mészáros, L. Siroki, T. Vajk. Towards a Fast, Efficient and Customiz-
able Domain-Specific Modeling Framework. In Software Engineering. 2009.
Innsbruck, Austria.

[ABK07] K. Anastasakis, B. Bordbar, J. M. Küster. Analysis of Model Transformations
via Alloy. In MoDeVVA’07. Pp. 47–56. October 2007.

[ALL09a] M. Asztalos, L. Lengyel, T. Levendovszky. Toward Automated Verification of
Model Transformations: A Case Study of Analysis of Refactoring Business
Process Models. In MPM. Denver, Colorado (USA), October 2009.

[ALL09b] M. Asztalos, L. Lengyel, T. Levendovszky. A formalism for describing model-
ing transformations for verification. In MoDeVVa ’09. Pp. 1–10. ACM, New
York, NY, USA, 2009.

[ALL10] M. Asztalos, L. Lengyel, T. Levendovszky. Towards Automated, Formal Ver-
ification of Model Transformations. In ICST. Paris, France, April 2010.

11 / 12 Volume X (2010)

141

Applying Offline Verification of Model Transformations to Mobile Social Networks

[AM09] M. Asztalos, I. Madari. VTL: an improved model transformation language.
In István Vajk (ed.), AACS. Pp. 185–195. BME Kiadó, Budapest, Hungary,
June 2009.

[AML10] M. Asztalos, I. Madari, L. Lengyel. Towards Formal Analysis of Multi-
paradigm Model Transformations. SIMULATION 86(7), 2010.

[BBG+06] B. Becker, D. Beyer, H. Giese, F. Klein, D. Schilling. Symbolic invariant
verification for systems with dynamic structural adaptation. In ICSE. Pp. 72–
81. ACM, New York, NY, USA, 2006.

[BH07] D. Bisztray, R. Heckel. Rule-Level Verification of Business Process Transfor-
mations using CSP. ECEASST 6, 2007.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS
Series XIV. Springer, 2006.

[EIA09] P. Ekler, Z. Ivánfi, K. Aczel. Similarity Management in Phonebook-centric
Social Networks. In ICIW. Venice, Italy, 2009.

[EL10] P. Ekler, T. Lukovszki. Experiences with phonebook-centric social networks.
In CCNC. Las Vegas, USA, 2010.

[Ore08] F. Orejas. Attributed Graph Constraints. In ICGT. Pp. 274–288. Springer-
Verlag, Berlin, Heidelberg, 2008.

[Pen09] K.-H. Pennemann. Development of Correct Graph Transformation Systems.
PhD thesis, Department of Computing Science, University of Oldenburg,
2009.

[Roz97] G. Rozenberg. Handbook on Graph Grammars and Computing by Graph
Transformation, Foundations, Vol.1. World Scientific,, 1997.

[Sch09] B. Schätz. Formalization and Rule-Based Transformation of EMF Ecore-
Based Models. SLE, Toulouse, France, September 29-30, 2008. Revised Se-
lected Papers, pp. 227–244, 2009.

[Var02] D. Varró. Towards Formal Verification of Model Transformations. In PhD
Student Workshop of FMOODS, Enschede, Hollandia. 2002.

[Vis] Visual Modeling and Transformation System (VMTS) website. http://vmts.
aut.bme.hu/.

Proc. GraBaTs 2010 12 / 12

142

http://vmts.aut.bme.hu/
http://vmts.aut.bme.hu/

Electronic Communications of the EASST
Volume X (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs2010)

Incremental Pattern Matching in Graph-Based StateSpaceExploration

Amir Hossein Ghamarian, Arash Jalali, Arend Rensink

12 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

143

http://www.easst.org/eceasst/

ECEASST

Incremental Pattern Matching in Graph-Based State Space
Exploration

Amir Hossein Ghamarian1, Arash Jalali2, Arend Rensink3

1 ghamarian@cs.utwente.nl
3 rensink@cs.utwente.nl

Department of Computer Science,
University of Twente, The Netherlands

2 arash@netstairs.com
NetStairs.com, Inc.

Abstract: Graph pattern matching is among the most costly operations in any graph
transformation system. Incremental pattern matching aims at reducing this costby
incrementally updating, as opposed to totally recalculating, the possible matches
of rules in the graph grammar at each step of the transformation. In this paper
an implementation of one such algorithm is discussed with respect to theGROOVE

toolset, with a special emphasis put on state space exploration. Specifically,we
shall discuss exploration strategies that could better harness the positiveaspects of
incremental pattern matching in order to gain better performance.

Keywords: Graph Transformation, Incremental Pattern Matching, State-space Ex-
ploration

1 Introduction

Graph transformation (GT) applications range from model transformation [GBG+06, FUJ06,
VB07] to software verification [KK08, Ren04b]. Irrespective of its applications, GT consists
mainly of the operations of finding the images of the rules in the host graph, i.e.,matching,
and transforming the host graph according to the rules. One of the major problems of GT in
general is the complexity of the matching operation. Different algorithms havebeen proposed in
the literature as optimized matching algorithms [HVV07, GBG+06, BÖR+08, BGT91]. These
algorithms are mainly based on one of the two approaches ofsearch plan[GBG+06, HVV07] or
incremental matching[BÖR+08, BGT91].

In the search plan approach, a match for a rule is found based on a plan,i.e., a set of primitive
matching operations, custom-made for each rule using a heuristic algorithm. Once the host
graph on which the GT rules are to be applied, is modified by a rule application,the plans must
be employed anew to once again find the matches of all the rules in the newly updated host graph.

Incremental matching, on the other hand, relies on a special data structurebased on all the
rules of the GT system, which is capable of maintaining information about partialand complete
matches of all the rules within the host graph. Any changes made to the host graph are also
applied to this data structure, and the information about partial and total matches is incrementally

1 / 12 Volume X (2010)

144

mailto:ghamarian@cs.utwente.nl
mailto:rensink@cs.utwente.nl
mailto:arash@netstairs.com

Incremental Pattern Matching in Graph-Based State Space Exploration

updated where needed. In this way, all the matches of all rules are always readily available, with
the extra cost of having to keep the network up to date.

Prior work in the GT literature suggests that incremental matching generally outperforms the
search plan approach [BGT91]. In particular, a very efficient and intuitive algorithm for incre-
mental pattern matching is based on the idea ofRETE networks [For82]. However, incremental
matching has only been used in tools that focus on a model transformation [BÖR+08]. GROOVE

[Ren04b], on the other hand, is a general purpose graph transformation tool withthe main distin-
guishing capability of generating the entire (finite) state space of a graph transformation system.
The current implementation uses search plans in its matching engine. In this paper, we investi-
gate the use of aRETE-based algorithm inGROOVE, with the hypothesis that, because we actually
apply all rule matches at every state, it should be possible to gain performance at least as much
as for theVIATRA case reported in [BÖR+08]. In addition to extendingRETE to support some
special features ofGROOVErules, in particular the quantified rules described in [Ren04a, RK09],
the main contributions of this paper are as follows:

• It introduces a state space exploration strategy that makes efficient use of RETE as the
matching algorithm.

• It reports experiments showing that the resultingRETE implementation outperforms the
previous search plan-based approach.

The next section explains the basic functionality ofGROOVE. Section2 specifies theRETE ap-
proaches together with our adaptation. Section3 describes state space exploration and proposes
an efficient strategy suitable forRETE. Section4 shows the experimental results. Finally, Sec-
tion 5 discusses directions for future work.

1.1 Introduction to GROOVE

In this section we briefly provide an overview of theGROOVE tool.

Graphs and rules.
Graphs inGROOVEconsist of nodes and labelled edges. An edge is a binary arrow betweentwo
nodes, or from a node to itself. Node labels can either be node types or flags, which are a special
kind of loop edges. Graphs are transformed by applying rules. A rule consists of: A) A pattern
that must be present in the host graph in order for the rule to be applicable; B) Subpatterns that
must be absent in the host graph in order for the rule to be applicable; C) Elements (nodes and
edges) to be deleted from the graph; D) Elements (nodes and edges) to beadded to the graph;
E) Pairs of nodes that are to be merged. All these elements are combined into asingle graph;
colours and shapes are used to distinguish them. Figure1 shows a small example.

The overall effect of the rule is to search forA- andC-nodes connected by achild-edge but
without aparent-edge to aP-node, and to modify this by removing thechild-edge and adding a
parent-edge to a freshP-node. For instance, the rule can be applied to the graph on the left hand
side of Figure2 in two ways, one of which results in the graph on the right hand side. (The other
application removes the otherchild-edge.)

Quantification.
One of the special features ofGROOVE is the support of universal quantification in rules (see

Proc. GraBaTs 2010 2 / 12

145

ECEASST

C

P P

A

parentparent

child

Legend:
A Ab Matched and preserved
A Ab Forbidden
A Ab Matched and deleted
A Ab Created

Figure 1: ExampleGROOVErule and legend

A

P

CC

A

child

parent

childchild

(a)Source graph

A

P

C

P

C

A

child

parent

child

parent

(b) Target graph

Figure 2: Example application of the rule in Figure1

[RK09]). A universally quantified (sub)rule is one that will be applied toall subgraphs that
satisfy the relevant application conditions, rather than just a single one as inthe standard case.
Such a rule can itself be much more concise, and also result in a smaller state space, than the
equivalent set of rules that would ordinarily be needed. In fact, quantification can benestedin the
sense that universally quantified rules can contain existential subrules,and vice versa. Among
other things, this makes it possible to formulate powerful application conditions(see [Ren04a]).

State space exploration.
The core functionality ofGROOVE is to recursively apply all rules from a predefined set (the
graph transformation system) to a given start graph, and to all graphs generated by such applica-
tions. This results in astate spaceconsisting of the generated graphs, which is a rich source of
information for further analysis.

In fact, GROOVE offers a choice of the exploration strategy to be used:depth-first full explo-
ration, which also allows on-the-fly LTL model checking;breadth-first full exploration, which
enables finding shortest paths to certain graphs; andlinear, random linear, andconditionalex-
ploration which allow simulation without covering all states, for instance if the state space is too
large. (In other words, for the latter strategies,GROOVEbehaves like other GT tools.)

2 RETE basics

TheRETE algorithm was first proposed by Forgy [For82] as an efficient means of pattern match-
ing in production rule systems, in which the system is expected to apply those rules whose
left-hand side (LHS) has a matching pattern in a given knowledge-base orstate. This original al-
gorithm was meant to be used in text-based expert systems; Bunke et al. generalized and adapted
the idea behind theRETE algorithm to graph grammars [BGT91].

The basic idea behindRETE is that the pattern represented by the LHS of a rule can be grad-
ually broken down into smaller sub-patterns all the way down to the basic elements of a graph

3 / 12 Volume X (2010)

146

Incremental Pattern Matching in Graph-Based State Space Exploration

pattern, i.e. nodes and edges. By applying the same process to all the rulesin a graph gram-
mar, it is possible to construct a network of patterns, starting from simple nodes and edges, to
more complex combinations that ultimately lead to the full pattern of the LHS of the rules. This
network, called theRETE network, is itself a directed acyclic graph.

2.1 Classic RETE

Figure3 shows a simple graph grammar with two rules and its correspondingRETE network. To
avoid confusion, a node in theRETE network is usually referred to as ann-node. As originally
defined in [BGT91], a RETE network consists of the following types of n-node:

Root.
This is the only node with no incoming edges. This node is in charge of receiving and passing
nodes and edges down the network during runtime, i.e. when matching is beingperformed. The
root is always succeded by edge-checker and node-checker nodes.

Edge-checkers.
Edge-checkers pass down the network those edges in the host graph that have a specific label.
Some edge-checkers only accept loop edges while some accept any edge. In Figure3c there are
three edge-checkers under the root, one of which only accepts loop edges with the label ‘current’.

Node-checkers.
Node-checkers appear only immediately after the root, but their use inGROOVE is much more
limited as nodes have no labels of their own inGROOVE. A node-checker can therefore be present
in a RETE network only when the LHS of a rule consists of one or more isolated nodes.

Subgraph-checkers.
They combine the matches they receive from the upper n-nodes, also known asantecedents, and
combine them into bigger matches if they overlap on certain nodes. These areindicated in Figure
3cby node equality relations at the bottom of each subgraph-checker. Subgraph-checkers always
have two antecedents, commonly referred to asleft andright antecedents. Matches received from
these antecedents are stored in two memories called the left and right memories.

Production nodes.
These nodes represent the LHS of a rule. If a match reaches a production node, it would mean
that it is a valid match for the LHS of that rule. The set of all possible matches of a production
node in the host graph is called itsconflict set.

The classicRETE algorithm for graphs consists of two phases: thestatic constructionand
the dynamicphase. During the static construction phase, theRETE network is built by going
through each rule of the grammar starting with the very basic elements in its LHS, i.e. nodes
and edges. Initially the network consists only of the root. When processingthe first rule in
the grammar, a separate edge-checker is created and added under the root for each edge in the
LHS. The algorithm will then try to combine those edge-checkers into subgraph-checkers. Each
subgraph-checker has a set of node equality relations, which signify the way the left and right
antecedents of the subgraph-checker are connected to each other. This n-node merging process
continues until a single subgraph-checker corresponding to the LHS ofa rule is built. At this
point a production node is added under the subgraph checker. For thesubsequent rules in the

Proc. GraBaTs 2010 4 / 12

147

ECEASST

current

this

this

next

(a) Grammar rule ’hop’

current

next

this

this

(b) Grammar rule ’hopBack’

Production Node
hop

- Subgraph Checker
- n37–next–>n38
- n39–current–>n39
- n40–this–>n41
– n41=n37

- Subgraph Checker
- n37–next–>n38
- n39–current–>n39
- n40–this–>n41
– n40=n39

- Subgraph Checker
- n39–current–>n39
- n40–this–>n41
– n40=n39

Edge Checker
n40–this–>n41

Edge Checker
n37–next–>n38

Edge Checker
n39–current–>n39

- Subgraph Checker
- n37–next–>n38
- n40–this–>n41
– n38=n41

ROOT

Production Node
hopBack

receive receive

receive

receive

receive

receive

receive

receive

receive

receive
receive

receive

receive

(c) Rete Network for ’hop’ and ’hopBack’

Figure 3: Two rules and their associatedRETE network

grammar, the algorithm will try as far as possible to reuse the existing n-nodes. For details of the
staticRETE network construction algorithm please refer to [BGT91].

During the dynamic phase, sometimes simply referred to asruntime, theRETE algorithm will
make use of the network to collectively find the conflict sets of all the rules in the grammar. At
the very beginning of the dynamic phase, theRETEnetwork is initialized by feeding all the edges
and nodes of the host graph into the root node. The root node will passdown what it receives
to its node- and edge-checker successors, and they in turn pass downlegitimate matches to their
subgraph-checker successors. The subgraph-checkers try to combine the partial matches they
receive from their left and right antecedents if possible, and will pass the combined matches
down to their own successors. This process continues until all the edgesand nodes of the host
graph are propagated through theRETE network. The matches that end up in the memories of
production nodes will constitute the conflict set of the corresponding rule. The contents of all
the memories of n-nodes collectively define thestateof theRETE network.

TheRETEstate should be updated after a rule is applied to reflect the changes made to the host
graph by that rule. This is where the incremental nature ofRETE can be seen, as the network is
updated by propagating only those elements that have been deleted or added by the rule’s RHS.

2.2 Extensions added to RETE in GROOVE

RETE has already been implemented in other GT tools such asVIATRA [BÖR+08]. Specific
features in each tool call for changes to be made to the classicRETE algorithm to make pattern
matching for rules that use them possible. Among such features inGROOVE are NACs, quanti-
fiers, and support for rules with disconnected LHSs. In this section, weshall briefly cover these

5 / 12 Volume X (2010)

148

Incremental Pattern Matching in Graph-Based State Space Exploration

enhancements.

Quantifiers and nested conditions.
Universal and existential quantifiers inGROOVE have been implemented based on the idea of
nested transformation rules [RK09]. Essentially in this scheme, a graph predicate is repre-
sented by a multi-level nested rule, where each subrule or subcondition is allowed to find its
own matches as if it were an autonomous rule. Through a process calledrule amalgamation, the
matches of the lower level conditions are collected based on the semantics of the quantifier at
each level to form the overall set of matches for a grammar rule.

TheRETE algorithm has been implemented inGROOVE to accommodate this nested predicate
approach. In other words, theRETE network has been extended inGROOVE to support the idea
of a subcondition rather than a quantifier, leaving the complexities of amalgamation out of the
RETE network data structure. To accomplish this, we have added a new type of n-node to the
RETEnetwork called acondition-checker. A condition-checker is in many ways like a production
node, in fact production nodes are implemented inGROOVEas a specialized condition-checker.
During the static construction phase, the construction algorithm not only iterates through the
grammar’s rules but also through the sub-rules of any complex rule that has one or more levels
of quantification in its LHS. During runtime, theRETE network can therefore be queried for the
conflict set of any (sub)condition at any level. This approach not onlyhelps keep the complexity
of quantifiers and their semantics out of the basic pattern matching algorithm, but it also allows
us to exploit any possible overlap of patterns among subconditions, as no discrimination is made
between subgraph-checkers based on the level of subcondition they are associated with.

Negative application conditions.
In GROOVE, negative application conditions (NACs) are implemented as subconditions. In other
words a rule with both positive and negative parts is represented as an upper level positive rule
together with a sub-rule that consists of all the negative nodes and edgeswith a root mapthat
specifies the connection points between the negative and the positive subgraphs.

Following this structure, theRETE implementation inGROOVE will also treat the NAC sub-
conditions as any other subcondition represented by a condition-checker. The condition-checker
associated with a NAC along with its antecedent n-nodes in theRETE network do their job as
if they are looking for positive matches. Once a new match appears in the conflict set of the
condition-checker associated with the NAC, that match is sent to the parent positive condition
as aninhibitor match, i.e., a match that can potentially inhibit the positive matches of the parent
positive condition. The positive condition-checker keeps the record ofits inhibitor matches as
well as the positive matches inhibited by them, and when it is queried for its conflict set, it will
only return those positive matches that are uninhibited.

Again, this implementation allows theRETE network to maintain its original simplicity and
to provide the possibility of reuse of subgraph-checkers among all condition-checkers. The
implementation of NACs in VIATRA [BÖR+08] is effectively like our implementation, except
that the inhibition map in our condition-checkers are explicitly implemented as a special kind of
subgraph-checker successor to a positive and a negative subgraph-checker in theRETE network.

Rules with disconnected LHSs.
The originalRETEalgorithm as outlined in [BGT91] assumes that each rule’s LHS is a connected

Proc. GraBaTs 2010 6 / 12

149

ECEASST

graph. There, it is suggested that in order to support disconnected left hand sides, one can assume
specialdummy edgesthat bridge between the disjoint components of the LHS.

In GROOVEa slight modification has been made to the algorithm as well as to the structure of
theRETE network so that any production node (or more generally a condition-checker) can have
not one but several subgraph-checkers as antecedents, where each subgraph-checker corresponds
to one of the disjoint components of the LHS. In turn, such a condition-checker with several an-
tecedents does not directly put matches received from its antecedents intoits conflict set, but are
rather collected aspartial matchesthat can be combined, on demand, with the partial matches
from other antecedents to form the whole matches for the condition. Unlike thedummy edge ap-
proach, this scheme remains faithful to the general philosophy of reusingof subgraph-checkers.

Domino removal.
For performance reasons, we have implemented the removal updates toRETE like a domino, i.e.
matches are linked together and once a deleted edge match reaches the firstsubgraph-checker,
GROOVE will follow the dependency links between smaller and larger matches and drops them
from the memories they reside in rather than going through the process of overlap-checking and
combining them in each subgraph-checker.

3 State space exploration

Having explained the static and dynamic part of theRETE network, in this section, we first
briefly show howRETE is used in the context of other existing GT tools in linear strategies.
Subsequently, we focus on howRETE can be used to explore the state space exhaustively.

3.1 Linear exploration and random linear exploration

In most GT tools, especially those with a model transformation focus (see [FUJ06, VB07]), it is
only needed to support a linear path through the state space. In other words, at each state, only
one match out of all the matches of all rules is picked and applied to generate the next new state.

In RETE, the state of the network is updated based on the changes made to the host graph as a
result of the application of a rule. This process repeats at each newly generated state. There are
different methods for choosing a match at each state. In linear strategy, the selected match can
be the very first match that is found, or rules can have priorities and the matches of the rules with
higher priorities are chosen first. If this match is selected randomly, the strategy is called random
linear. The overall scheme of this strategy is given in Algorithm(Random) LinearStrategy.

Algorithm (Random) LinearStrategy(G, H)
Input: A Graph GrammarG
Input: Input graphH
1. rete←buildReteNetwork(G)
2. rete.initialize(H)
3. while desirable
4. do (rule, match)←rete.selectAMatch()
5. (∗match corresponds to the rule∗)
6. δ ←applyMatch(rule, match,H)
7. Rete.update(δ)

7 / 12 Volume X (2010)

150

Incremental Pattern Matching in Graph-Based State Space Exploration

�

� �

� �

� �

�

�

� �

�

� �

	

�
 ��
��

�

(a) An example of DFS
strategy usingRETE.

�

� �

� �
�

���

��

��

��

��

��

��

�

	

� �� ��

(b) An example of BFS
strategy usingRETE.

�

� �

� �

� �

�

�

�

� �

�

� �

	

�
 ��
��

(c) An example of a
customizedRETE DFS.

Figure 4: Different state space exploration strategies usingRETE

3.2 Exhaustive state space exploration

There are different strategies for state space generation.GROOVE supports the main two algo-
rithms, i.e., Depth-First Search (DFS) and Breadth-First Search (BFS). As explained in the linear
strategy, theRETE network must be initialized in the beginning of the strategy, and as changes
occur to the host graph, theRETE state also needs to be updated accordingly. The number of
RETE updates as well as the size of updates (number of elements added and removed from the
graph) can substantially affect the performance of the exploration strategy. Figure4a and Fig-
ure4b show two sample state spaces traversed using the conventional DFS and BFS strategies
respectively. They also show the order in which theRETE state is updated, if these strategies are
used together withRETE as the matching algorithm.

Circles represent the states and the solid arrows between them represent transitions (rule ap-
plications) between two states. The dashed arrows signify updates performed on theRETE state.
The number on each state is the order in which it is generated. The numbers next to each dashed
line show the order in which theRETE state is updated, which could be more than once.

In Figure4a the exploration starts from state 1, then in the DFS scheme the first match is
selected and applied, consequently the successor state is discovered. The RETE state is updated
according to the changes resulting from the rule application in state 1, which leads to state 2
(dashed arrow 1). The same procedure then repeats untill it reaches state 4, where there are
no more successors and the exploration strategy needs to backtrack. The backtrack requires
the matches of state 3 to be found again. In other words, theRETE update 4 is the reverse of
update 3. This time however, the second match must be chosen from theRETE conflict sets,
and this process continues until all states are fully explored. It is importantto note that in every
backtrack, a new (next) match ought to be selected, which implies that a fixedorder among the
matches needs to be maintained withinRETE; a requirement that can be very expensive. It is
also important to note that during each backtrack, theRETE network will inevitably findall the
possible matches at that state, including those that have already investigated.

Figure4b follows the same principle but in a BFS fashion. As can be seen, there are many
duplicateRETE updates, as a state needs to be visited several times.

In order to avoid duplicate updates, as well as to avoid having to keep the conflict sets of the

Proc. GraBaTs 2010 8 / 12

151

ECEASST

rules sorted in a fixed order, we propose another strategy which is more suitable for a matching
algorithm likeRETE, in which all matches are readily available at each state. Figure4c shows
this customized strategy, which we callrete-dfs. In this approach, once a state is reached,all
the successor states are generated and stored in a stack. The stack a global data-structure that
contains the generated but not yet fully-explored states. The next stateto be explored is thus the
state at top. This will cause the rest of the exploration strategy to continue in aDFS fashion.

The rete-dfs algorithm is explained in detail in AlgorithmreteDfsStrategy. TheRETE network
is built based on the grammarG, and then gets initialized with the host graphH. The host graph
is added to the stack, and as long as there are states in the stack, thenextprocedure is called.

Algorithm reteDfsStrategy(G, H)
Input: A Graph GrammarG
Input: Input graphH
1. rete←buildReteNetwork(G)
2. rete.initialize(H)
3. stack.push(H)
4. while stack is not empty
5. do next(G, rete)

Algorithm next(G, rete)
Input: A Graph GrammarG
Input: UpdatedRETE staterete
1. atState←stack.top()
2. matchSet←reteState.getMatchSet()
3. for every (rule, match) in matchSet
4. dodo newState←applyMatch(rule, match, atState)
5. stack.push(newState)
6. updateAtState(atState, rete)

In procedurenextall the matches of the current state are queried from the updatedRETE state.
Each rule match is applied according to its corresponding rule and the newly generated states are
added to the stack. ThenupdateAtStateis invoked in order to update theRETE state.

Algorithm updateAtState(atState, rete)
Input: The currrently explored stateatState
Input: UpdatedRETE staterete
1. δ ←0
2. if atState6= stack.top()
3. then atState←stack.top()
4. else (∗ no new state is put on stack in the last call tonext∗)
5. repeat
6. δ ←δ+ atState.getFromParentDelta() (∗ getFromParentDelta returns the changes when

going from the parent of atState to atState∗)
7. triedState←atState
8. stack.pop()
9. atState←stack.top()
10. until atState.parent()= triedState.parent()or atState= null
11. if atState6= null
12. then δ ←δ−1

+ atState.getFromParentDelta()
13. rete.update(δ)

If in procedurenext any new state was added to the stack (atState is not equal to the top
of stack), that would mean that the exploration is going forward. In that case,updateAtState
just applies the changes made by the last rule application (δ) to that state and theRETE state
is updated according toδ . Each state saved on the stack maintains the changes occurred when
moving from its parent to itself; information which is obtained by callinggetFromParentDelta.

However, if during the course of the procedurenext nothing new was added to the stack,
updateAtStatewould start backtracking by removing states from the stack. During backtrack,

9 / 12 Volume X (2010)

152

Incremental Pattern Matching in Graph-Based State Space Exploration

Grammar States Trans.
32-bit 3GB 64-bit 48GB

Incr. [s] Search Plan [s] Incr. [s] Search Plan [s]
rete-dfs DFS BFS rete-dfs DFS BFS

append1 4046 11210 2.4 2.5 2.5 4.6 4.4 4.3
append2 261460 969977 253.0 792.0 831.0 199.0 190.0 184.0
carPlat1 4881 11280 0.6 0.5 0.6 1.2 1.0 1.3
carPlat2 110366 323405 110.0 109.2 111.6 9.9 8.5 8.7
carPlat3 2988061 10632648 1371.0 1539.0 - 203.0 202.6 205.1

crashCars1 131072 548864 21.6 26.7 31.7 18.9 21.5 27.4
crashCars2 278528 1236992 48.2 59.0 70.6 37.5 40.7 50.9
crashCars3 589824 2768896 343.0 367.5 446.7 74.5 86.1 105.4

Table 1: Exploration strategies’ execution times

updateAtStateaccumulates inδ all the parent-to-child changes of the states taken from the stack.
The backtracking continues untilupdateAtStatereaches a state where forward exploration is

once again possible. This happens when the top of the stack is a sibling of (shares a parent with)
the last state popped out of the stack. At this stage the backtracking phaseis over and it is time
to apply the accumulated changes stored inδ so far. However, since the changes stored inδ are
from parent to child and we have been travelling in the opposite direction,δ needs to be inverted
first (as indicated byδ−1 in line 12). In addition to the invertedδ , the update to theRETE state
should also include one forward step from the shared parent to the siblingfound at the stack top.

It is important to note that theseδ ’s between the states are accumulated and the state ofRETE

gets updated only once. This approach decreases the amount of changes needed to be propagated
throughRETE. Maximum gain is achieved in cases when the changes made by successiverules
cancel each other out, e.g. an edge is added by one transition and removed by another.

4 Experimental results and evaluation

We compared the rete-dfs exploration strategy, which usesRETE as an incremental matching
algorithm, with DFS and BFS strategies, which use search plan for matching. We executed all
of these strategies on three different grammarscar platooning, crashing carsandappendand
each grammar on multiple start graphs (available throughGROOVE repository [Ren04b]). Car
platooningwas taken from this year’s GT tool contest, and the other two have been devised by
theGROOVE team. These grammars are chosen as they not only make use of the special features
of GROOVE grammars such as NACs, etc. but they also cover various levels of rule complexity
with regards to the size of their LHS. The experiments were ran on a machine with two Quad core
Xeon 3GHz processors. Two series of experiments were performed over 32-bit and 64-bit Java
Virtual Machines with 3GB and 48GB of RAM respectively. The results areshown in Table1.

The first column shows the name of the grammar along with a sequence number representing
the start graphs used to run the exploration. The larger the sequence number, the larger the size
of the corresponding start graph. The second and third columns are thenumbers of states and
transitions in the state space, respectively. The next six columns show the execution times of the
three strategies in seconds, over the 32-bit and the 64-bit JVMs. A hyphen (-) in the execution
time means that the experiment did not finish due to an out-of-memory exception.Please note

Proc. GraBaTs 2010 10 / 12

153

ECEASST

Grammar
User time Real time

Incr. [s] Search Plan [s] Incr. [s] Search Plan [s]
rete-dfs DFS BFS rete-dfs DFS BFS

append2 231.4 240.0 233.2 199.0 190.0 184.0
carPlat3 350.6 467.5 513.3 203.0 202.6 205.1

crashCars3 105.9 134.4 158.1 74.5 76.1 105.4

Table 2: User time versus real time in 64-bit JVM

that the reported time is the whole execution time, and the matching time is a fraction of this time.
To make the total time a more precise indication of the matching time, isomorphism checking
has been turned off in these experiments.

Table1 shows that in the 32-bit case, rete-dfs almost always outperforms the other two strate-
gies, with substantial gains of up to 300%. Overall, it scales much better for larger cases.

On a 64-bit architecture, depending on the size of the host graph and thenumber of matches
at each state, rete-dfs can perform a bit better or worse than the other two strategies. In general,
there is no substantial performance difference between the three strategies.

The great disparity in the observed performance gain between the two architectures is primar-
ily caused by the significant difference between the size of the available memory in each case,
and the significant decline in the performance of DFS and BFS in the 32-bit case can be taken as
an indication of their extravagance in memory allocation (and de-allocation), which will result
in the production of a larger amount of garbage memory, thus calling for morefrequent garbage
collection cycles to be performed during their execution. It is worth mentioningthat garbage col-
lection in the 64-bit case is performed in parallel by 8 cores. This is evidentfrom the measured
user time (the time spent in all threads including the garbage collectors) as shown in Table2 for
the largest cases of all three grammars. A significant improvement in total computation time for
rete-dfs over the other two strategies can be observed.

ThatRETEgenerates less garbage memory than search plans can be explained by thisinherent
property ofRETE that matches unaffected by an update toRETE remain in the n-nodes’ memories
and are used in the subsequent states, whereas matches found by search plan at each state will be
thrown away after each transition even if they are needed again at the next state.

5 Conclusion and future work

We proposed an adapted version of aRETE-based incremental pattern matching algorithm that
could accommodate the special features and requirements ofGROOVE. As our main contribution,
we used this incremental pattern matching algorithm in exhaustive state space exploration. To
harness the full potential ofRETEwe proposed the rete-dfs exploration strategy. The comparison
of our proposed strategy with both DFS and BFS which use search plan showed that under com-
mon execution configurations rete-dfs visibly outperforms other existing strategies (especially
with larger start graphs), and that only under very special circumstances with an unusual abun-
dance of resources (eight 64-bit CPU cores and as much as 48GB of memory) can the existing
strategies perform as well as rete-dfs.

In our agenda for future work, first and foremost is the adding of support for some of the more

11 / 12 Volume X (2010)

154

Incremental Pattern Matching in Graph-Based State Space Exploration

advanced features inGROOVE, e.g. mergers, regular expressions and attributes. Furthermore,
possible optimizations of the structure ofRETE need to be more thoroughly investigated. Cur-
rently, the network is built in an ad-hoc way, leaving a lot of room for further optimization as the
order in which the rules and their nodes and edges are processed during the static phase can affect
the efficiency of theRETE network both in terms of speed and memory. Another clue for further
optimization of the exploration strategy is that sometimes during backtracking, thesize of update
(δ) to be performed on the network can be very large; so much so that it might occasionally be
less costly if theRETE states are stored in their entirety at all or some of the states.

Bibliography

[BGT91] H. Bunke, T. Glauser, T.-H. Tran. An Efficient Implementation of Graph Grammars Based
on the RETE Matching Algorithm. InProceedings of the 4th International Workshop on
Graph-Grammars and Their Application to Computer Science. Pp. 174–189. Springer-Verlag,
London, UK, 1991.

[BÖR+08] G. Bergmann, A.̈Okrös, I. Ŕath, D. Varŕo, G. Varŕo. Incremental pattern matching in theVI -
ATRA model transformation system. InGRaMoT ’08: Proceedings of the third international
workshop on Graph and model transformations. Pp. 25–32. ACM, NY, USA, 2008.

[For82] C. Forgy. RETE, a fast algorithm for the many pattern/ many object pattern match problem.
Artificial Intelligence19:17–37, 1982.

[FUJ06] TheFUJABA Toolsuite. 2006. Homepage:http://www.fujaba.de.

[GBG+06] R. Geiß, G. V. Batz, D. Grund, S. Hack, A. Szalkowski. GRGEN: A Fast SPO-Based Graph
Rewriting Tool. In Corradini et al. (eds.),International Conference on Graph Transformations
(ICGT). LNCS 4178, pp. 383–397. Springer, 2006.

[HVV07] Á. Horváth, G. Varŕo, D. Varŕo. Generic Search Plans for Matching Advanced Graph Patterns.
ECEASST6, 2007.

[KK08] B. K önig, V. Kozioura. Augur 2 — A New Version of a Tool for the Analysis of Graph
Transformation Systems. In Bruni and Varró (eds.),Graph Transformation and Visual Mod-
eling Techniques (GT-VMT 2006). Electronic Notes in Theoretical Computer Science 211,
pp. 201–210. 2008.

[Ren04a] A. Rensink. Representing First-Order Logic UsingGraphs. In Ehrig et al. (eds.),International
Conference on Graph Transformations (ICGT). LNCS 3256, pp. 319–335. Springer Verlag,
2004.

[Ren04b] A. Rensink. TheGROOVESimulator: A Tool for State Space Generation. In Pfaltz et al. (eds.),
Applications of Graph Transformations with Industrial Relevance, (AGTIVE). LNCS 3062,
pp. 479–485. Springer, 2004. Seehttp://sourceforge.net/projects/groove.

[RK09] A. Rensink, J.-H. Kuperus. Repotting the geraniums:on nested graph transformation rules.
In Boronat and Heckel (eds.),Graph transformation and visual modelling techniques (GT-
VMT). Electronic Communications of the EASST 18. EASST, 2009.

[VB07] D. Varró, A. Balogh. The model transformation language of the VIATRA2 framework.Sci-
ence of Computer Programming68(3):187–207, 2007.

Proc. GraBaTs 2010 12 / 12

155

http://www.fujaba.de
http://sourceforge.net/projects/groove

	1_Henshin.pdf
	1_Henshin.pdf
	Introduction
	EMF Model Transformation based on Graph Transformation
	Typed Attributed Graphs and Graph Transformation
	Typed Attributed Graphs versus EMF Modeling

	Example: Personal Mobility Manager
	Henshin Transformation Units
	Application Conditions
	Related Work
	Conclusion

	4_ReachAnalysisGT.pdf
	Introduction
	Mechatronic UML
	System architecture
	Timed Story Driven Modeling

	Reachability Analysis
	Verification Framework
	Architecture
	Modeling Rules
	Performing time computations
	Verification of constraints

	Evaluation
	Related Work
	Conclusions

	5_NeighAbstGROOVE.pdf
	Introduction
	Neighbourhood Abstraction
	Case study
	Conclusion

	6_Sketch.pdf
	Introduction
	Business Process Models
	The Frameworks PerSUADE and DSketch
	Hypergraphs and Hypergraph Grammars
	User Assistance with PerSUADE
	Diagram Recognition à la DSketch

	Integration of User Assistance into DSketch
	Placement of New Components by the Use of Graph Drawing Techniques
	User Interface

	Discussion
	Location of Recognition Errors
	Limitations

	Related Work
	Conclusion
	Processing steps by example

	7_BehaviourAnimated.pdf
	Introduction
	Running Example: Traffic
	Animation by Graph Transformation with DiaMeta
	Animation Modeling Language
	Translating AML Models to DiaMeta Specifications
	Related Work
	Conclusions
	Appendix

	9_Visualization.pdf
	Introduction
	Case study: Formal Verification of BPEL Processes
	Static Traceability Models
	Visualization of Traceability Models
	Visualization of Static Traceability Models
	Domain-specific Layout Algorithm for Static Traceability Models
	Implementation and Usage Scenarios

	Evaluation of Related Work
	Conclusion and Future Work

	11_Distributed.pdf
	Introduction
	Graph-based state space generation
	The LTSmin framework
	State vectors and tree compression
	Serialising canonical form graphs

	The experiments
	Conclusion

	12_Offline.pdf
	Introduction
	Case Study
	Metamodeling Central Social Network
	Similarity Handling Transformation

	Components of a verification framework
	Model Condition Description Language
	Model Condition Inference Logic
	Propagation of Formulae

	Automated Verification Framework
	Verification of Model Transformation Handling Similarity

	Related Work
	Conclusions

	13_Incremental.pdf
	Introduction
	Introduction to groove

	RETE basics
	Classic RETE
	Extensions added to rete in groove

	State space exploration
	Linear exploration and random linear exploration
	Exhaustive state space exploration

	Experimental results and evaluation
	Conclusion and future work

